Process Intensification

Bruce Eldridge

James R. Fair Process Science and Technology Center The University of Texas at Austin

Process Science & Technology Center

An industry and government (NSF, DOE) supported center conducting fundamental and applied research targeted at reducing energy consumption and capital expenditures. The center consists of multiple collaborators from multiple institutions.

АМ

Process Intensification

Eldridge definition: Combining or optimizing multiple process steps to reduce energy consumption and /or capital cost.

Five examples from the PSTC / SRP / Eldridge Laboratories:

Divided Wall Distillation. Membrane Reactors. Reactive Distillation. Chemically Enhanced Separations. Rapid Prototyping of Mass Transfer Devices.

Divided Wall Column Distillation

Divided Wall Column

Multicomponent Separations

Potential Energy Savings

Agrawal R and Fidkowski ZT (1998) Are Thermally Coupled Distillation Columns Always Thermodynamically More Efficient for Ternary Distillations? Ind. Eng. Chem. Research, 37, pg 3444-3454.

Implementation

Dejanovic, L., Matijasevic, Z. & Olujic, Z. Dividing wall column - a breakthrough towards sustainable distilling. *Chem. Eng. and Pro.*, **49**, 559–580 (2010).

Separations Research Program DWC Pilot Plant

Membrane Reactor

9

Experimental Unit

Open Literature Data

Reference	Membrane	H ₂ permeance cm ³ /cm ² /min/Psi (500 C)	H ₂ /N ₂ selectivity	H ₂ /H ₂ O selectivity
B.K Sea	SiC	9*10 ⁻²	4.3	4.5
B.K Sea	SiO2	5.4*10 ⁻³	2400	11
M. Kanezashi	Ni doped silica	1.1*10 ⁻⁶	400	37
Membrane A	Separative layer Al ₂ O ₃	9*10 ⁻²	5	1.8

Reaction: Olefin Metathesis

- Catalyzed equilibrium reaction that cleaves double bonds in alkenes and redistributes the alkene fragments
- With two asymmetric alkenes

Further isomerization and subsequent metathesis can be used

Bottoms Concentrations

C8s	0.00%
C9s	0.00%
C10s	24.00%
C11s	28.00%
C12s	28.00%
C13s	13.00%
C14s	4.00%
C15s	2.00%
C16s	1.00%

Reflux Concentrations

Compound	Reflux	
C2s	0.00%	
C3s	0.00%	
C4s	10.00%	
C5s	33.00%	
C6s	57.00%	
C7s	0.00%	
C8s	0.00%	
Total	100.00%	

Chemically Enhanced Separations π bond complexation

Weak reversible chemical bond
Complexation favored by high pressures and low temperatures

Experimental Apparatus

Chemical Complexation

Rapid Prototyping of Mass Transfer Internals

CFD Geometry Generation

CFD Simulation Results

Rapid Prototyping / Testing