# Systems Analysis of Membrane Reactors for Energy and Environmental Applications

#### Fernando V. Lima

Department of Chemical Engineering West Virginia University, Morgantown, WV

NSF Process Intensification Workshop Washington, DC October 1, 2014

## Presentation Outline

### Introduction & Motivation

### 2 Membrane Reactor Modeling

- Modeling Approach & Assumptions
- Simulation Set Up & Case Studies

#### 3 Membrane Reactor Optimization

- Problem Formulation
- Solution & Results



## Membrane Reactors for Process Intensification



- Membrane reactors and their role in process intensification<sup>1</sup>
  - compact and modular
  - environmentally friendly
  - capital cost reduction
  - efficiency improvement
  - higher conversions than conventional reactors
- Process systems engineering approach
  - design and implementation of emerging technologies
  - accelerate process intensification when utilizing major energy sources
  - provide guidelines for experimental research

<sup>1</sup>Drioli, Stankiewicz, and Macedonio (2011)

Lima, Ph.D. (WVU)

MR Systems Analysis

NSF PI Workshop 3 / 20

# Current Membrane Reactor Applications



• Direct methane aromatization (DMA) to fuels and chemicals

- ion transport-based membranes
- focus on production of hydrogen and benzene<sup>2</sup>

• Water gas shift (WGS) for carbon capture and hydrogen production

- zeolite and polymer-based membranes
- integration into advanced energy plants (IGCC/NGCC)
  - \* analysis of membrane placement in the flowsheet<sup>3</sup>
  - \* optimization of heat integration and generation of products

<sup>2</sup>Carrasco, Liu, and Lima (2014) <sup>3</sup>Marano and Ciferno (2009)

- Develop a membrane reactor (MR) model
  - ► address WGS reaction for CO<sub>2</sub> capture and H<sub>2</sub> production
  - focus on H<sub>2</sub>-selective polybenzimidazole hollow fiber (PBI-HF) membranes
- Perform systems studies (simulation, optimization) employing developed model
  - determine membrane characteristics (selectivity, permeance) to achieve specifications reported by the DOE<sup>4</sup>
  - minimize capital cost by optimizing membrane use as function of surface area required

<sup>&</sup>lt;sup>4</sup>Marano (2010); Marano and Ciferno (2009)

# Membrane Reactor Design & Modeling Assumptions



- Reactor design
  - 1-dimensional shell and tube reactor
  - catalyst packed in the tube side
  - thin membrane layer placed on surface of tube wall
  - sweep gas flows in shell side
  - co-current and counter-current flow configurations
- Modeling assumptions
  - plug-flow operation
  - constant pressure and controlled temperature<sup>5</sup>
  - steady-state operation

<sup>5</sup>Georgis, Lima, Almansoori, and Daoutidis (2014)

Lima, Ph.D. (WVU)

MR Systems Analysis

### Membrane Reactor Model

• Mole balance - tube (reaction side)<sup>6</sup>



• Mole balance - shell (permeation side)



• Flux through membrane: Fickian activated diffusion<sup>7</sup>

 $J_i = Q_i \Delta P_i$ 

in which  $Q_i = Q_{i,0} exp(-E_a/RT)$ <sup>6</sup>Lima, Marano, Daoutidis, and Tsapatsis (2011) <sup>7</sup>Berchtold, Singh, Young, and Dudeck (2012) Lima, Ph.D. (WVU) MR Systems Analysis

### Membrane Reactor Simulation Set Up

- Simulation conditions from literature or expected lab facilities
  - ▶ feed composition<sup>8</sup>: treated syngas
  - catalyst type (Cu/ZnO/Al<sub>2</sub>O<sub>3</sub>) and reaction rate<sup>9</sup>
  - reactor dimensions
    - \*  $d_t = 1.02 \text{ cm}$
    - ★ L = 300 cm
  - operating conditions
    - \*  $P_t = 47.63$  atm,  $P_s = 25.86$  atm<sup>10</sup>
    - ★ *T* = 300°C
- Membrane characteristics and ranges
  - $H_2/CO_2$  selectivity:  $\alpha_{H_2/CO_2} = 15 75$
  - H<sub>2</sub> permeance:  $Q_{H_2} = 100 300 \text{ GPU}$

<sup>10</sup>Lima, Marano, Daoutidis, and Tsapatsis (2011)

<sup>&</sup>lt;sup>8</sup>Marano (2010)

<sup>&</sup>lt;sup>9</sup>Choi and Stenger (2003)

### Parameter Definitions & Target Values

- Membrane reactor parameters: definitions and target values<sup>11</sup>
  - ► CO<sub>2</sub> capture (C<sub>CO2</sub>)

$$C_{CO_2} = \frac{\text{Carbon in retentate}}{\text{Carbon in feed}} = \frac{F_{CO,r} + F_{CO_2,r}}{F_{CO,f} + F_{CO_2,f}} \ge 90\%$$

• CO conversion 
$$(X_{CO})$$

$$X_{CO} = \frac{\text{CO converted}}{\text{CO in feed}} = \frac{F_{CO,f} - (F_{CO,r} + F_{CO,p})}{F_{CO,f}} \ge 98\%$$

► H<sub>2</sub> recovery/productivity (*R*<sub>H<sub>2</sub></sub>)

$$R_{H_2} = \frac{\mathsf{H}_2 \text{ in permeate}}{(\mathsf{H}_2 + \mathsf{CO}) \text{ in feed}} = \frac{F_{H_2,p}}{F_{H_2,f} + F_{CO,f}} \ge 95\%$$

- Other stream constraints<sup>12</sup>
  - ▶ CO<sub>2</sub> and H<sub>2</sub>O purity in retentate:  $P_{CO_2+H_2O,r} \ge 95\%$
  - ▶ H<sub>2</sub> molar fraction in retentate:  $y_{H_2,r} \le 4\%$
  - H<sub>2</sub> purity in permeate:  $P_{H_2,p} \ge 44\%$

<sup>11</sup>Woods et al. (2007); Koukou et al. (1998); Marano (2010)
<sup>12</sup>Marano (2010)

# Benchmark: Multi-stage (3) Configuration



(日) (同) (三) (三)

э

# Benchmark: Multi-stage (3) Configuration



- Simulation conditions
  - total reaction/permeation zone length of 300 cm
  - ▶ Q<sub>H<sub>2</sub></sub> = 250 GPU

  - $v_t \approx v_s \approx 400 \text{ cm}^3/\text{min}$
  - sweep gas: steam

Image: A matrix and a matrix

.∃ >

# Benchmark: Multi-stage (3) Configuration



### Simulation conditions

- total reaction/permeation zone length of 300 cm
- ▶ Q<sub>H<sub>2</sub></sub> = 250 GPU
- $v_t \approx v_s \approx 400 \text{ cm}^3/\text{min}$
- sweep gas: steam

#### Simulation results

| Parameter         | Value [%] | Target [%] |
|-------------------|-----------|------------|
| X <sub>CO</sub>   | 99.19     | 98         |
| R <sub>H2</sub>   | 97.07     | 95         |
| $C_{CO_2}$        | 90.28     | 90         |
| $P_{CO_2+H_2O,r}$ | 95.64     | 95         |
| $P_{H_2,p}$       | 47.59     | 44         |

\_\_\_ ▶

| Stroom    | Prossuro [atm] | Compositions [%] |        |                        |                       |                       |
|-----------|----------------|------------------|--------|------------------------|-----------------------|-----------------------|
| Stream    |                | CO               | $H_2O$ | <b>CO</b> <sub>2</sub> | <b>H</b> <sub>2</sub> | <b>N</b> <sub>2</sub> |
| feed      | 47.63          | 24.43            | 48.86  | 5.68                   | 19.33                 | 1.70                  |
| retentate | 47.63          | 0.23             | 54.07  | 41.57                  | 1.67                  | 2.46                  |
| sweep     | 25.86          | 0                | 100    | 0                      | 0                     | 0                     |
| permeate  | 25.86          | 0.06             | 49.02  | 3.22                   | 47.59                 | 0.11                  |

Lima, Ph.D. (WVU)

NSF PI Workshop 1

10 / 20

# MR Simulation Results: Counter-current Flows

- Simulation conditions
  - MR length of 300 cm
  - ▶ Q<sub>H<sub>2</sub></sub> = 250 GPU

  - $v_t \approx v_s \approx 400 \text{ cm}^3/\text{min}$
  - sweep gas: steam
  - Simulation results



| Stroam Prossuro [atm] |       | Compositions [%] |        |                        |                       |                       |
|-----------------------|-------|------------------|--------|------------------------|-----------------------|-----------------------|
| Stream                |       | CO               | $H_2O$ | <b>CO</b> <sub>2</sub> | <b>H</b> <sub>2</sub> | <b>N</b> <sub>2</sub> |
| feed                  | 47.63 | 24.43            | 48.86  | 5.68                   | 19.33                 | 1.70                  |
| retentate             | 47.63 | 0.05             | 54.10  | 41.51                  | 1.89                  | 2.44                  |
| sweep                 | 25.86 | 0                | 100    | 0                      | 0                     | 0                     |
| permeate              | 25.86 | 0.15             | 51.19  | 2.93                   | 45.62                 | 0.11                  |

- Simulation conditions
  - MR length of 300 cm
  - ▶ *Q*<sub>*H*<sub>2</sub></sub> = 250 GPU

  - $v_t \approx v_s \approx 400 \text{ cm}^3/\text{min}$
  - sweep gas: steam
  - Simulation results

| Parameter         | Value [%] | Target [%] |
|-------------------|-----------|------------|
| X <sub>CO</sub>   | 99.27     | 98         |
| R <sub>H2</sub>   | 96.75     | 95         |
| $C_{CO_2}$        | 90.49     | 90         |
| $P_{CO_2+H_2O,r}$ | 95.61     | 95         |
| $P_{H_2,p}$       | 45.62     | 44         |

| Stroom    | Prossuro [atm] | Compositions [%] |        |                        |                       |                       |
|-----------|----------------|------------------|--------|------------------------|-----------------------|-----------------------|
| Stream    |                | CO               | $H_2O$ | <b>CO</b> <sub>2</sub> | <b>H</b> <sub>2</sub> | <b>N</b> <sub>2</sub> |
| feed      | 47.63          | 24.43            | 48.86  | 5.68                   | 19.33                 | 1.70                  |
| retentate | 47.63          | 0.05             | 54.10  | 41.51                  | 1.89                  | 2.44                  |
| sweep     | 25.86          | 0                | 100    | 0                      | 0                     | 0                     |
| permeate  | 25.86          | 0.15             | 51.19  | 2.93                   | 45.62                 | 0.11                  |

## Counter-current Results: Changing Membrane Selectivity



| Parameter          | Value [%] $(\alpha_{H_2/CO_2} = 75)$ | <b>Value</b> [%] $(\alpha_{H_2/CO_2} = 45)$ | Value [%]<br>$(\alpha_{H_2/CO_2} = 15)$ | Target [%] |
|--------------------|--------------------------------------|---------------------------------------------|-----------------------------------------|------------|
| X <sub>co</sub>    | 99.27                                | 99.32                                       | 99.44                                   | 98         |
| R <sub>H2</sub>    | 96.75                                | 97.60                                       | 99.41                                   | 95         |
| $C_{CO_2}$         | 90.49                                | 84.58                                       | 56.13                                   | 90         |
| $P_{CO_2+H_2O,r}$  | 95.61                                | 95.89                                       | 95.86                                   | 95         |
| $P_{H_2,p}$        | 45.62                                | 43.88                                       | 37.07                                   | 44         |
| УH <sub>2</sub> ,r | 1.89                                 | 1.45                                        | 0.30                                    | (≤)4       |

Lima, Ph.D. (WVU)

NSF PI Workshop 12 / 20

< 🗗 🕨

### • Constrained optimization problem

- systematic determination of optimal membrane reactor design
- cost parameters assigned
  - maximize performance (hydrogen recovery)
  - minimize cost (membrane area)

| Parameter           | Price [\$] |
|---------------------|------------|
| PBI-HF              | $500/m^2$  |
| membrane            | 500/11     |
| H <sub>2</sub> fuel | 1.78/kg    |

## Nonlinear Programming: Mathematical Formulation

Objective function

$$\Phi = \min_{x} \left[ \text{cost}_m - \text{credit}_{H_2} \right]$$

s.t.: target specifications and constraints

in which



### Membrane Reactor Optimization: Results

- Benchmark for study: improve successful counter-current case
- Problem initial guess: stand-alone MR configuration
- Solution for 1 year operating cycle



<sup>13</sup>Lima, Daoutidis, and Tsapatsis (2014)

## Membrane Reactor Optimization: Results

- Benchmark for study: improve successful counter-current case
- Problem initial guess: stand-alone MR configuration
- Solution for 1 year operating cycle



- Length of membrane layer:  $L_{m_1} + L_{m_2} + L_{m_3} = 255.60$  cm
- Solution indicates
  - optimal design: short pre-shift reactor followed by long MR
  - potential savings in membrane material ( $\approx 15\%$ )

 $\star~$  large-scale^{13} (A\_{\it m}\approx 6800~m^2) \implies savings as high as \$ half million

<sup>13</sup>Lima, Daoutidis, and Tsapatsis (2014)

## Membrane Reactor Optimization: Results

- Benchmark for study: improve successful counter-current case
- Problem initial guess: stand-alone MR configuration
- Solution for 1 year operating cycle

| Parameter          | Value [%] | Target [%] |
|--------------------|-----------|------------|
| X <sub>CO</sub>    | 99.62     | 98         |
| $R_{H_2}$          | 95.90     | 95         |
| $C_{CO_2}$         | 91.92     | 90         |
| $P_{CO_2+H_2O,R}$  | 95.00     | 95         |
| $P_{H_2,P}$        | 46.13     | 44         |
| УH <sub>2</sub> ,R | 2.53      | (≤)4       |

- Length of membrane layer:  $L_{m_1} + L_{m_2} + L_{m_3} = 255.60$  cm
- Solution indicates
  - optimal design: short pre-shift reactor followed by long MR
  - potential savings in membrane material ( $\approx 15\%$ )

 $\star~$  large-scale^{13} (A\_{\it m}\approx 6800~m^2) \implies savings as high as \$ half million

<sup>13</sup>Lima, Daoutidis, and Tsapatsis (2014)

# Analysis of Optimization Results

Concentration profiles [mol/cm<sup>3</sup>] vs. reactor length



- Optimal design not obvious from counter-current profiles in permeate
- Flexible optimization problem
  - could be adapted for other applications
    - autothermal coupling of methane steam reforming and methane catalytic combustion<sup>14</sup>
    - ★ methane conversion processes
  - could be used for minimization of catalyst layer

<sup>14</sup>Zanfir, Baldea, and Daoutidis (2011)

# Conclusions and Future Directions

- Membrane reactor model developed for systems analysis
- Membrane reactor simulation studies performed
  - ▶ screen for successful cases that satisfy constraints (e.g., CO<sub>2</sub> capture)
  - help guiding membrane experimental research by determining (\(\alpha\_{H\_2/all}, Q\_{H\_2}\)) pairs
- Constrained optimization problem formulated
  - systematic selection of optimal reactor design
  - more efficient membrane use by optimal placement
  - flexible for different applications
- Future/ongoing membrane reactor systems studies
  - detailed modeling of reaction and transport phenomena
  - process design optimization and operability
  - model predictive control and estimation
- Systems studies facilitate MR integration into emerging energy processes

- Collaborators:
  - Drs. Kathryn Berchtold and Rajinder Singh (LANL) WGS-MR
  - Dr. Dongxia Liu (UMD) DMA-MR
- WVU Students: Andrew Radcliffe and Juan Carlos Carrasco
- West Virginia University

- K. A. Berchtold, R. P. Singh, J. S. Young, and K. W. Dudeck. Polybenzimidazole composite membranes for high temperature synthesis gas separations. *J. Membr. Sci.*, 415–416:265–270, 2012.
- J. C. Carrasco, D. Liu, and F. V. Lima. Modeling and nonlinear operability analysis of a membrane reactor for direct methane aromatization. In *AIChE Annual Meeting*, Atlanta, GA, November 2014.
- Y. Choi and H. G. Stenger. Water gas shift reaction kinetics and reactor modeling for fuel cell grade hydrogen. *J. Power Sources*, 124(2):432–439, 2003.
- E. Drioli, A. I. Stankiewicz, and F. Macedonio. Membrane engineering in process intensification An overview. J. Membr. Sci., 380(1-2):1-8, 2011.
- D. Georgis, F. V. Lima, A. Almansoori, and P. Daoutidis. Thermal management of a water-gas-shift membrane reactor for high-purity hydrogen production and carbon capture. *Ind. Eng. Chem. Res.*, 53(18):7461–7469, 2014.
- M. K. Koukou, N. Papayannakos, N. C. Markatos, M. Bracht, and P. T. Alderliesten. Simulation tools for the design of industrial-scale membrane reactors. *Chem. Eng. Res. Des.*, 76(A8):911–920, 1998.

3

イロト イヨト イヨト イヨト

### References II

- F. V. Lima, J. J. Marano, P. Daoutidis, and M. Tsapatsis. Modeling and optimization of membrane reactors for carbon capture in IGCC units. Submitted for publication, 2011.
- F. V. Lima, P. Daoutidis, and M. Tsapatsis. Modeling, optimization and cost analysis of IGCC plants with membrane reactors for carbon capture. Submitted for publication, 2014.
- J. J. Marano. Integration of  $H_2$  separation membranes with  $CO_2$  capture & compression. Report to DOE, Contract No. DE-AC26-05NT41816, 2010.
- J. J. Marano and J. P. Ciferno. Integration of gas separation membranes with IGCC -Identifying the right membrane for the right job. *Energy Procedia*, 1(1):361–368, 2009.
- M. C. Woods, P. J. Capicotto, J. L. Haslbeck, N. J. Kuehn, M. Matuszewski, L. L. Pinkerton, M. D. Rutkowski, R. L. Schoff, and V. Vaysman. Cost and performance baseline for fossil energy plants. Volume 1: Bituminous coal and natural gas to electricity final report. Technical Report Revision 1, DOE/NETL-2007/1281, August 2007.
- M. Zanfir, M. Baldea, and P. Daoutidis. Optimizing the catalyst distribution for countercurrent methane steam reforming in plate reactors. *AIChE J.*, 57(9): 2518–2528, 2011.

э.

(日) (周) (三) (三)