Process Intensification:
Application in Pharmaceutical
Manufacturing

Marianthi Ierapetritou

Department of Chemical and Biochemical Engineering

RUTGERS

Laboraty for Optimization and SCh OOI Of Engineering

Systems Analysis

NSF Engineering Research

' PURDUE N]J I
Center for Structured Organic Particulate Systems (C-SOPS) @; &JTGERS Uk J el (1)




Current state of Pharmaceutical Industry

- Process development challenges
— Time pressure for clinical supply delivery
— Uncertainty throughout development process
— Unique physical properties of APIs
— Sequential scale-up of batch processes

« Economic challenges
- Up to 27% of revenues spent on manufacturing costs
— Increased global competition, generics manufacturers

« Regulatory concerns
— Quality by Design (QbD) — companies need increased process understanding
— Inherent variability in performance and sampling

Need efficient and robust manufacturing strategies in order to remain
competitive

McKenzie, P. K et al. AIChE Journal 2006, 52 (12).
Buchholz, S. Chem Eng Process 2010, 49 (10), 993-995
Basu, P, et al. J Pharm Innov 2008, 30-40.

Shah, N. Comput Chem Eng 2004, 28 (6-7), 929-941
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Current state of Pharmaceutical Industry

« Pharmaceutical industry is innovative in development of new drugs BUT
manufacturing is primitive compared to other chemical industries

« Given a new formulation/product:

Operate
Optimize - process at
esxmglrli_ni?a?\ltes small-scale ctl:,'i’;fgl S(l:’ale nominal point
P PIeeEss P throughout
lifecycle

* Production predominantly in BATCH mode
« A batch is produced -> samples are tested = batch FAILS/PASSES
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Batch vs. Continuous Processes

» Intermediate steps in batch, not continuous

Batch Process Continuous Process

POWDER == INTERMEDIATES =» TABLETS POWDER == TABLETS

No intermediate blends or steps
Lots of down
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Batch vs. Continuous Processes

» Continuous manufacturing has no lag times in production, while batch has delays
due to washing, blending and comilling between batches (no product being made)

A
8 U USSP Continuous
3 o _ _ after X time
*g Increased productivity (No. tablets in X time)
5 7’\\( 3 Batches
5 after X time
=
9
Q
@
= Filling Feed
B Frame
3 oo
= Set Up /’, )(_>
2 <—><—> 'Washing, down time ' Tablet Press
/ blending, comilling
; | —>
t=0 > Actual Time
Blending, 5
comilling Remember: Product is only manufactured
when its at the tablet press
Start Operation
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Batch vs. Continuous Processes

- Batch Continuous
Cons Cons
— Productivity is low o — Novel method
— Down time — Few regulatory fillings
— Set process design and operation — Requires engineering understanding
— Powder exposure during process N
Pros

— Scale-up necessary

— Time and new equipment —~ High Productivit.y |
_ Harder to control — No down time in process

— Wasted batches — Set desig_n, but vary_ing parameters
— Within-batch variability ! — Flexible operation
— Multiple operators required L — Enclosed powders = no exposure
— Less scale-up studies

Pros — Extended operation = scale up
— Many products are produced in — Better control
smaller quantities P _ No failed batches
~ Existing *know-how" and fillings ~ Automated process = less operators !
— Smaller footprint and equipment
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Advantages of Continuous Processes

Some of the major advantages of continuous systems include:
— Increased productivity
 Eliminate down time during operation
— Fewer scale-up studies
« Parallelization, increased throughput3
« Reduced time to market
— Small and compact equipment
« Reduced capital cost and utilities requirement!.2
« Small area footprint
— Ability to implement control strategies*
« Real-time feedback control, Model Predictive Control (MPC)
« Enhanced process robustness
— Advanced computational tools — process systems engineering®

Seifert, T. et al. Chem Eng Process 2012, 52, 140-150.

Schaber, S. D et al. Ind Eng Chem Res 2011, 50 (17), 10083-10092.
Plumb, K., Chem Eng Res Des 2005, 83 (A6), 730-738.

Singh, R.; et al. Int J of Pharm 2012, 438 (1-2), 307-26.

Gernaey, K. V. et al. Comput Chem Eng 2012, 42, 15-29.
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Process Systems Engineering

* Process modeling capabilities

- Supplement experimental work during process feeders (R
development!? foptinal) +

— Design and test control strategies

APl and Excipient
Feeders

Lubricant

- Flowsheet models?, Discrete element method?

« Process analysis

——— Common Operations

- Sensitivity analysis* — identify critical process
parameters, control variables

~  Flexibility and feasibility analysiss — design M Rl

i — - Direct Compaction
==== Dry Granulation
! =+ = Wet Granulation

space and process robustness over 1 : Compactor |
- |
- Process optimization® w4
— Determine optimal process design and 7 | =
operating conditions subject to product quality Tablet Press

and process operating constraints

Gernaey, K. V. et al. Comput Chem Eng 2012, 42, 15-29.

Boukouvala, F et al. J Pharm Innov 2013, 8 (1), 11-27.

Sarkar, A.; Wassgren, C. R.. Powder Technology 2012, 221, 325-336.

Rogers, A et al. Ind Eng Chem Res 2013, 131015102838009.

Boukouvala, F.; Ierapetritou, M. G., Comput Chem Eng 2012, 36, 358-368.

Boukouvala, F.; Ierapetritou, M. In AIChE Annual Meeting, Pittsburgh, PA, AIChE: Pittsburgh, PA, 2012.
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Challenges for a flowsheet model for solids

Critical material properties

« Lack of universal set throughout processes and industries

« Inherent variability in powder material properties & distributed parameters
« Lack of technology for monitoring desired material properties online

Critical process operating variables
« Lack of correlation between operating variables and material properties
« No control strategies

Modeling work

« Majority: Discrete Element Method (DEM) simulations-> computationally expensive

« In recent literature: plethora of experimental studies & empirical correlations of certain
inputs/outputs & specific materials

« Dynamic reduced order models are needed:
— First-principle based
— Population balance models
— Data based models

Werther, J., et al. Computers & Chemical Engineering 23(11-12) 1773-1782
Boukouvala, F. et al. Computers & Chemical Engineering. 42(11) 30-47
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Ideal Development of a Pharmaceutical Process

Given a Formulation

Characterize Powders using Universal Tests

N4

Evaluate Unit Operation Models using Powder Properties
U4

Create the Design Space for Individual Unit Ops
\4
Design the Process
N4
Build a Flowsheet Model
. A o
Develop the Design Space of the Overall Process and Optimize

Determine Operating Parameters and Control Strategies

N4
Validate using Experimental Data
N4
Asses Process Sensitivities and Risks
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Integrated Process Models

5
v Optional feeders for more
ingredients(i.e. lubricant)
Excipient + ? ?
Feeder Granulation

Optional
Recirculation tank

API
Feeder

f————
I |

Continuous flexible
multipurpose
platform

» Process
simulation
Sensitivity
analysis

Coater Design space
Tablet Dissolution evaluation
press - Optimization

LO
Roller L
Compactor
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Unit Operation Models: Direct Compaction

FEEDERS:
Model: Delay Differential
Equation

—> rpm |—>
dso.P ds0,P
Fset Fout

MIXER:

Model: Population
Balance model

—> rpm —>
d50’pi d50, p
Fin‘Ci I:out, Ci’

RSD

Individual unit operation models consist of a series of

DIRECT

eqguations meant to describe process physics and

dynamics

HOPPER:

Model: Mass flow buffer tank

model

—> H,D

dso.P
Fin,Ci,

outlet

—>
dso.p
I:out, Cis

RSD

TABLET PRESS:
Model: Heckel equation & feed
frame residence time model

RSD

—> P,rpm |—>
A0, €,0,C
Fin,Ci, P
RSD Fout
DISSOLUTION:
Model: Fick’'s second Law
€, ds, > hr

Unit operation equations can be combined sequentially
to represent entire manufacturing processes
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Latent Variable ROM based on DEM

In CFD simulation: Discretize into finite elements—> solve set of equations

for specific element-> calculate continuous variable values (T,P).

information???

In a DEM simulation—-> discrete elements (particles)> How do we extract

— Discretize geometry and extract average information about number of particles
inside each compartment. Consider “unreliable means” as missing

iz, L

F w2 bt

Few number of particles:
Consider as missing data
(impute)

20 paricios

Very few or no particles:
Set equal to zero

ing Research

Particulate Systems (C-SOPS) @f

BUT how to discretize?
v'Dense enough to capture
spatial variation

v'Coarse enough to have large
number of particles inside each
element

Large enough number of
particles:
Use average value
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Discrete Element Reduced-Order Modeling
Methodology

1. DOE - 2. Discretize 3. Extract 4. Obtain 5. Pre-process
parameter process state data (2) response state and
variation geometry data (Y) response data

Input Space Output Space

| |

Xe EKNX" Ve mem
State Space Z€ R

6. Reduce 7. Develop a mapping 8. Develop a mapping between

dimensionality of  between input space (X)  input parameters (X) and output
state data (PCA) and reduced state space  space (Y)

(PCA scores)

X —>T
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RSD?

Steady State Case Study

Average u, of particles (m/s)

DEM

% MSE 28% 19% 21%

Prediction error for RSD (1 case): 1%

50 100 150 200 250

Axial position (mm)

IV E
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Veloaty predlcted by ROM

RSD
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Dynamic Case Study
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Predicted u, vs. u, obtained from DEM 23 seconds after change from 160 to 250 rpms

rob ORSD-DEM _ o

A « RSD-ROM * Velocity and RSD predictions have good accuracy
08E
L |+ Velocity prediction can be used directly in PBM
oAsf: model
05} * Prediction of RSD can be used for surrogate-based
oifg - modeling or sensitivity analysis applications
0,3»% ¢
N ]
o1y % u W'

®® 7 200 300 400 500 €0 700 80 90 1600 % MSE | 0.55% 0.96% 1.13% 1.07%
Time(s)

NSF Engineering Research [QJTGERS PURDUE N ]I




DESIGN SPACE

How much uncertainty can a process tolerate?
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FDA's "Design Space” vs. PSE’s Process Flexibility

Design Space

N

« "..The multidimensional combination
and interaction of input variables and
process parameters that have been
demonstrated to provide assurance of

quality...”

PQLI Design Space

*  No clearly defined method about how to
identify a process DS°

?

\_ J

3 Lepore, J., & Spavins, J. Journal of Pharmaceutical Innovation, 2008
4 Boukouvala et. al, Journal of Pharmaceutical Innovation, 2010

NSF Engineering Research

Center for Structured Organic Particulate Systems (C-SOPS) @

Flexibility

«  “Flexibility of a process is defined as its
capability to maintain
for a
that may be encountered
during operation 2

mm feasible
Bl infeasible

max /min P(d,Z,xa ‘9) Vast literature on

d,z,x .
formulation of
S.t. optimization problems

which to find max
h(d929 X, 9) =0 acceptable deviations
2(d,z,x,0)<0

under uncertainty

1 Halemane et al. (1983), AIChE Journal.
2 Floudas et al. (2001), IECR
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Black-box Process Feasibility

Goal is to locate boundaries of feasible operation: Feasibility function — process
- When multiple constraints are present is feasible when u<0
» (Closed form expression for constraints may not be available y(d,0)= minu

»  When discrete designs are possible 519 (d.z.0)<u, jeJ
b ] 279 - b

Initial Determine Expected Feasible region
P E[I()] J

Samples Improvement <tol? boundaries
E[I(x)] : identified

Additional No
samples

Probability of u=(0: boundary

Model uncertainty

X

Initial sampling Refined sampling Predicted feasible 1

: 2 2 2
1Jones et al. 1998 region 0.5 =x; —x; <u
2Boukouvala et. al, Computers and Chemical Engineering, (36), 2012
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pesign Space or Continuous blenaer

Mixin g —
g9 We define feasibility:
Input variables Output variable » Since we want to minimize the output
/ Impeller Rotat/on 1 H
< _Speed (RPM) -+ pct el RSD, we set a maximum threshold value
(o e g B x concentration that can be tolerated (RSD,,,,)
Lo Rate Qa2 s '/ v / . If the predicted output is lower, it’s
T feasible
. Configuration _ 7 «If the predicted output is higher, it’s
(All- forward’ or infeasible
‘Alternate’)
Design variable

N\

=0.1 Introduce binary variables for each design (m) and form a

250
MINLP problem:
200} a Where:
= i design
150 min/max m: total number designs
o st n: number of input variables
100 B;: RSM coefficients
z;: input variables
50 X;: response surface produced for
30 ~~ zﬁ»")"’ < Zj(i) < Zﬁi) 7 i=1..m,j=1..k| eachdesigni
Flow Rate N\
At high Flow Rates, low
] 4
7 forward RPM-> Constraint to
° alternate | eageage use forward blade make sure only x =B, + Z Bz + Z Binzyz, + Z B2
configuration one design is J<k
chosen

Boukouvala et. Al, Journal of Pharmaceutical Innovation, 2010
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OPTIMIZATION

Product
properties

Economic
and

- operating

\_constraints /

Inverse problem:
Based on desired
properties, what should the
design of the flowsheet be?

Material
| properties

N

~

Flowsheet design

NSF Engineering Research @ RUTGERS PURDUE N |
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Surrogate based Optimization:
Proposed Methodology

* Combination of global search (initially) -
with local search (final stage) o Initially sample
’ entire region
* Incorporation of a black-box feasibility — “ ‘

stage to identify form of feasible region
Refine in boundary
EUI(0)] s =S¢[—] regions to map

* Final local trust-region approach by feasible region

allowing multiple starting points if
clusters of promising feasible points is
identified

* Alleviation of noise effects through a —l+w

stochastic kriging model

— heteroscedastic variance case

Boukouvala, F., lerapetritou, M AIChE Journal. Volume 60, Issue 7, pages 24622474, July 2014.
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« SUBJECT TO: Process capacity bound constraints,

requirement

« Leads to an optimization of an expensive-to-evaluate model,

Process Optimization

« OBJECTIVE: minimize cost of a 1 day operation of continuous direct compaction
« DECISION VARIABLES: process capacities, operating conditions, throughput, refill strategy

SURROGATE SIMULATION-BASED OPTIMIZATION

Product quality constraints, Minimum production

with complex constraints and uncertainty:

Step 1: Formulate

objective and constraints

Step 2: Flowsheet simulations for
different conditions based on DOE

Step 3: Build surrogate model and
optimize. Approximate uncertainty

L srpm <ipm?

I ipm
yoming roming
I 099C\!g5, = C\Ig& =1.0 IC.\IgSI

I01<'RL£06

rio 4 T
I Ll@pg‘ <\Lbo‘,b)zw - Llnpp?
7 7-45
| Vioo <V <V
©w
I Pomz,v P < Pgnzr

| hardness” < hardness < hardness®
I P <e<e?
Vg Sl <LE,

l.T ablet _prod_,_ =Tablet pre ‘od

des
=

Adaptive
sampling
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Uncertainty surface

| ‘l‘l

lx‘

|| ||l

5) '@

Output Space 160000
¥ 158000
2 156000
3]
2 154000
2
o) 152000 \
0 10 20
NI Iteration
\—V Optimal cost: S 153892
Response surface
Variable Optimum
total(kg/h)
Mixer rpm 102
Cigst (W/w) | 0.0092
R RL(%) 54
Vhopper (M?) | 0.03
oy, €— Peomp(P2) 1042
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Conclusions and future goals

« As the industry is moving to advanced manufacturing solutions,
process intensification will be in the center of attention.

« There is a need for predictive models for optimization of process
design and operations

« Reduced order modeling techniques are needed, due to the
complexity of models necessary for complex pharmaceutical
processes

« Technologies are transferrable to other powder processing industries
such as food, consumer goods.

« As flowsheet models are being used, flowsheet synthesis framework
will be developed to design process for any new formulation
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RUTGERS Process Modeling and Optimization of Biorefinery

Zhaojia Lin
Motivation: Exhausting petroleum resources have prompted the development of sustainable
biorefinery to produce biofuel and bio-chemicals from biomass feedstocks.
Objectives:

= Perform techno-economic analysis on the productions of biobased chemicals and estimate the
minimum cost of the products

=  Apply life cycle assessment to evaluate the environmental impacts
= |mplement process synthesis and optimization to achieve an optimal process diagram
/" Techno-Economic Analysis ) Process Synthesis and
Experimental Data <> 0 > > 0 Optlmlzatlon
Process Design -
J

Accomplishments:
Discounted Cash Flow ‘ / Somss _| %%
Life Cycle Assessment \ @

/

Aspen plus
>PEn P LCA software ; ; _
| nven to I"y - Separalio.n units Separ'ation units Separat.ion units
Energy HEN
flow

[ = * Black-Box optimization and synthesis

Aspen Energy

\ Analyzer
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