Process Intensification: Application in Pharmaceutical Manufacturing

Marianthi Ierapetritou

Department of Chemical and Biochemical Engineering

Current state of Pharmaceutical Industry

Process development challenges

- Time pressure for clinical supply delivery
- Uncertainty throughout development process
- Unique physical properties of APIs
- Sequential scale-up of batch processes

Economic challenges

- Up to 27% of revenues spent on manufacturing costs
- Increased global competition, generics manufacturers

Regulatory concerns

- Quality by Design (QbD) companies need increased process understanding
- Inherent variability in performance and sampling

Need efficient and robust manufacturing strategies in order to remain competitive

McKenzie, P. K et al. AIChE Journal 2006, 52 (12). Buchholz, S. Chem Eng Process 2010, 49 (10), 993-995 Basu, P. et al. J Pharm Innov 2008, 30-40. Shah, N. Comput Chem Eng 2004, 28 (6-7), 929-941

Current state of Pharmaceutical Industry

- Pharmaceutical industry is innovative in development of new drugs BUT manufacturing is primitive compared to other chemical industries
- Given a **new** formulation/product:

- Production predominantly in **BATCH** mode
- A batch is produced \rightarrow samples are tested \rightarrow batch FAILS/PASSES

Batch vs. Continuous Processes

Intermediate steps in batch, not continuous

Batch vs. Continuous Processes

 Continuous manufacturing has no lag times in production, while batch has delays due to washing, blending and comilling between batches (no product being made)

5

Batch vs. Continuous Processes

Batch

Cons

- Productivity is low
 - Down time
- Set process design and operation
- Powder exposure during process
- Scale-up necessary
 - Time and new equipment
- Harder to control
 - Wasted batches
 - Within-batch variability
- Multiple operators required

Pros

- Many products are produced in smaller quantities
- Existing `know-how' and fillings

NSF

GERS PUR

• Continuous

Cons

- Novel method
 - Few regulatory fillings
- Requires engineering understanding

Pros

- High Productivity
 - No down time in process
- Set design, but varying parameters
 - Flexible operation
- Enclosed powders = no exposure
- Less scale-up studies
 - Extended operation = scale up
- Better control
 - No failed batches
- Automated process = less operators
- Smaller footprint and equipment

Advantages of Continuous Processes

Some of the major advantages of continuous systems include:

Increased productivity

• Eliminate down time during operation

Fewer scale-up studies

- Parallelization, increased throughput³
- Reduced time to market

Small and compact equipment

- Reduced capital cost and utilities requirement^{1,2}
- Small area footprint

Ability to implement control strategies⁴

- Real-time feedback control, Model Predictive Control (MPC)
- Enhanced process robustness

Advanced computational tools – process systems engineering⁵

Gernaey, K. V. et al. Comput Chem Eng 2012, 42, 15-29.

[.] Seifert, T. et al. *Chem Eng Process* **2012**, *52*, 140-150.

Schaber, S. D et al. *Ind Eng Chem Res* 2011, *50* (17), 10083-10092.
 Plumb, K., *Chem Eng Res Des* 2005, *83* (A6), 730-738.

PIUMD, K., Chem Eng Res Des 2005, 83 (A6), 730-738. Singh, R.; et al. Int J of Pharm 2012, 438 (1-2), 307-26.

Process Systems Engineering

Process modeling capabilities

- Supplement experimental work during process development¹
- Design and test control strategies
- Flowsheet models², Discrete element method³

Process analysis

- Sensitivity analysis⁴ identify critical process parameters, control variables
- Flexibility and feasibility analysis⁵ design space and process robustness

Process optimization⁶

 Determine optimal process design and operating conditions subject to product quality and process operating constraints

- Boukouvala, F et al. J Pharm Innov 2013, 8 (1), 11-27.
 Sarkar, A.; Wassgren, C. R.. Powder Technology 2012, 221, 325-336.
- Sarkar, A.; Wassgren, C. R.. *Powder Technology* **2012**, *221*, 325-33
 Rogers, A et al. *Ind Eng Chem Res* **2013**, 131015102838009.
- Boukouvala, F.; Ierapetritou, M. G., *Comput Chem Eng* **2012**, *36*, 358-368.

Gernaey, K. V. et al. Comput Chem Eng 2012, 42, 15-29.

Challenges for a flowsheet model for solids

Critical material properties

- Lack of **universal** set throughout processes and industries
- Inherent **variability** in powder material properties & **distributed** parameters
- Lack of technology for **monitoring** desired material properties online

Critical process operating variables

- Lack of **correlation** between operating variables and material properties
- No **control** strategies

Modeling work

- Majority: Discrete Element Method (DEM) simulations→ computationally expensive
- In recent literature: plethora of experimental studies & empirical correlations of certain inputs/outputs & specific materials
- Dynamic reduced order models are needed:
 - First-principle based
 - Population balance models
 - Data based models

Werther, J., et al. Computers & Chemical Engineering **23**(11-12) 1773-1782 Boukouvala, F. et al. Computers & Chemical Engineering. **42**(11) 30-47

Ideal Development of a Pharmaceutical Process

Integrated Process Models

Unit Operation Models: Direct Compaction

• Unit operation equations can be combined sequentially to represent entire manufacturing processes

NSF Engineering Research Center for Structured Organic Particulate Systems (C-SOPS)

٠

Latent Variable ROM based on DEM

- In CFD simulation: Discretize into finite elements → solve set of equations for specific element → calculate continuous variable values (T,P).
- In a DEM simulation → discrete elements (particles) → How do we extract information???
 - Discretize geometry and extract **average** information about number of particles inside each compartment. Consider "unreliable means" as **missing**

Discrete Element Reduced-Order Modeling Methodology

 Reduce dimensionality of state data (PCA) 7. Develop a mapping between input space (X) and reduced state space (PCA scores) $X \rightarrow T$

8. Develop a mapping between input parameters (X) and output space (Y)

Steady State Case Study

NSF Engineering Research Center for Structured Organic Particulate Systems (C-SOPS)

Dynamic Case Study

Predicted u_x vs. u_x obtained from DEM 23 seconds after change from 160 to 250 rpms

- Velocity and RSD predictions have good accuracy
- Velocity prediction can be used directly in PBM model
- Prediction of RSD can be used for surrogate-based modeling or sensitivity analysis applications

	Ux	Uy	Uz	RSD
% MSE	0.55%	0.96%	1.13%	1.07%

DESIGN SPACE

How much **uncertainty** can a process tolerate?

FDA's "Design Space" vs. PSE's Process Flexibility

Design Space

• "..The multidimensional combination and interaction of input variables and process parameters that have been demonstrated to provide assurance of quality..."

	PRODUCT QUALITY LIFECYCLE IMPLEMENTATIO	ON (PQLI) INNOVATIONS
	PQLI Design Space	
	John Lepore - James Spavins	
	Published online: 17 May 2008 © International Society for Pharmaceutical Engineering 2008	
	Abstract This paper describes progress made by the Design Space Task Team within the ISPE Product Quality Lifecycle Implementation (PQL) initiative. It is intended to provide approaches to the rational development of Design Space, as well as background on Design Space, its hintarical origins and how in fiss within the wider PQLI initiative. The focus of this paper is on the technical elements of Design Space development.	The general engineering and technical design processes discussed here have been widely used by many types of industries in addition to the pharmaceutical industry (including acrospace, food, computer, civil and mechanical engineering and medical devices) and the use of risk hased analyses to determine design constraints and then determine appropriate controls is a foundational process to the advancement of science and technology. Accordingly, it is appropriate for the pharmaceutical industry to expand the
No c	learly defined n	nethod about how to
iden	tify a process D	53
	?	
	?	
	?)
epore, J., 8	Spavins, J. Journal of	f Pharmaceutical Innovation, 20

Center for Structured Organic Particulate Systems (C-SOPS)

Flexibility

 "Flexibility of a process is defined as its capability to maintain feasible operation for a range of uncertain conditions that may be encountered during operation"^{1,2}

¹ Halemane et al. (1983), AIChE Journal. ² Floudas et al. (2001), IECR

Black-box Process Feasibility

Goal is to locate boundaries of feasible operation:

- When multiple constraints are present
- Closed form expression for constraints may not be available
- When discrete designs are possible

Feasibility function – process is feasible when u≤0

 $\psi(\mathbf{d}, \boldsymbol{\theta}) = \min_{\mathbf{u}, \mathbf{z}} u$

 $s.t.g_i(d,z,\theta) \le u, \ j \in J$

Design Space of Continuous blender

OPTIMIZATION

Inverse problem:

Based on desired properties, what should the design of the flowsheet be?

Surrogate Based Optimization: Proposed Methodology

- Combination of global search (initially) with local search (final stage)
- Incorporation of a black-box feasibility stage to identify form of feasible region
- Final local trust-region approach by allowing multiple starting points if clusters of promising feasible points is identified
- Alleviation of noise effects through a stochastic kriging model
 - heteroscedastic variance case

Boukouvala, F., Ierapetritou, M AIChE Journal. Volume 60, Issue 7, pages 2462–2474, July 2014.

Process Optimization

- **OBJECTIVE:** minimize cost of a 1 day operation of continuous direct compaction
- DECISION VARIABLES: process capacities, operating conditions, throughput, refill strategy
- **SUBJECT TO:** Process capacity bound constraints, Product quality constraints, Minimum production requirement
- Leads to an optimization of an expensive-to-evaluate model, with complex constraints and uncertainty: SURROGATE SIMULATION-BASED OPTIMIZATION

Conclusions and future goals

- As the industry is moving to advanced manufacturing solutions, process intensification will be in the center of attention.
- There is a need for predictive models for optimization of process design and operations
- Reduced order modeling techniques are needed, due to the complexity of models necessary for complex pharmaceutical processes
- Technologies are transferrable to other powder processing industries such as food, consumer goods.
- As flowsheet models are being used, flowsheet synthesis framework will be developed to design process for any new formulation

Rutgers

Motivation: Exhausting petroleum resources have prompted the development of sustainable <u>biorefinery</u> to produce *biofuel and bio-chemicals* from biomass feedstocks.

Objectives:

- Perform techno-economic analysis on the productions of biobased chemicals and estimate the minimum cost of the products
- Apply life cycle assessment to evaluate the environmental impacts
- Implement process synthesis and optimization to achieve an optimal process diagram

Accomplishments:

Acknowledgements :

Funding provided by the ERC (NSF-0504497, NSF-ECC 0540855)

ENGINEERING RESEARCH CENTER FOR STRUCTURED ORGANIC PARTICULATE SYSTEMS

RUTGERS UNIVERSITY PURDUE UNIVERSITY NEW JERSEY INSTITUTE OF TECHNOLOGY UNIVERSITY OF PUERTO RICO AT MAYAGÜEZ

