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•  Process development challenges 

‒  Time pressure for clinical supply delivery 

‒  Uncertainty throughout development process 
‒  Unique physical properties of APIs 
‒  Sequential scale-up of batch processes 
 

•  Economic challenges 
‒  Up to 27% of revenues spent on manufacturing costs 

‒  Increased global competition, generics manufacturers 

•  Regulatory concerns 
‒  Quality by Design (QbD) – companies need increased process understanding 

‒  Inherent variability in performance and sampling  
 

Need efficient and robust manufacturing strategies in order to remain 
competitive 

McKenzie, P. K et al. AIChE Journal 2006, 52 (12). 
Buchholz, S. Chem Eng Process  2010, 49 (10), 993-995 
Basu, P. et al. J Pharm Innov 2008, 30-40. 
Shah, N. Comput Chem Eng 2004, 28 (6-7), 929-941 

Current state of Pharmaceutical Industry 
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•  Pharmaceutical industry is innovative in development of new drugs BUT 
manufacturing is primitive compared to other chemical industries 

•  Given a new formulation/product:  
 

•  Production predominantly in BATCH mode 
•  A batch is produced   à  samples are tested à batch FAILS/PASSES 
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Current state of Pharmaceutical Industry 
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Batch vs. Continuous Processes 
 
}  Intermediate steps in batch, not continuous 
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Batch vs. Continuous Processes 
 
}  Continuous manufacturing has no lag times in production, while batch has delays 

due to washing, blending and comilling between batches (no product being made) 
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Set Up 

Start Operation 

Tablet Press 

Blending, 
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Filling Feed 
Frame 

Remember: Product is only manufactured 
when its at the tablet press 
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Batch vs. Continuous Processes 
•  Batch 

Cons 
–  Productivity is low 

–  Down time 
–  Set process design and operation 
–  Powder exposure during process 
–  Scale-up necessary 

–  Time and new equipment 
–  Harder to control 

–  Wasted batches 
–  Within-batch variability 

–  Multiple operators required 

Pros 
–  Many products are produced in 

smaller quantities 
–  Existing ‘know-how’ and fillings 

•  Continuous 
Cons 
–  Novel method 

–  Few regulatory fillings 
–  Requires engineering understanding 
 

Pros 
–  High Productivity 

–  No down time in process 
–  Set design, but varying parameters 

–  Flexible operation 
–  Enclosed powders = no exposure 
–  Less scale-up studies 

–  Extended operation = scale up 
–  Better control 

–  No failed batches 
–  Automated process = less operators 
–  Smaller footprint and equipment 

6 



Advantages of Continuous Processes 
Some of the major advantages of continuous systems include: 

–  Increased productivity 
•  Eliminate down time during operation 

–  Fewer scale-up studies 
•  Parallelization, increased throughput3 

•  Reduced time to market 

–  Small and compact equipment  
•  Reduced capital cost and utilities requirement1,2 

•  Small area footprint 

–  Ability to implement control strategies4 

•  Real-time feedback control, Model Predictive Control (MPC) 

•  Enhanced process robustness 

–  Advanced computational tools – process systems engineering5  

1.  Seifert, T. et al. Chem Eng Process 2012, 52, 140-150. 
2.  Schaber, S. D et al. Ind Eng Chem Res 2011, 50 (17), 10083-10092. 
3.  Plumb, K., Chem Eng Res Des 2005, 83 (A6), 730-738. 
4.  Singh, R.; et al. Int J of Pharm 2012, 438 (1-2), 307-26. 
5.  Gernaey, K. V. et al. Comput Chem Eng 2012, 42, 15-29. 
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Process Systems Engineering 

1.  Gernaey, K. V. et al. Comput Chem Eng 2012, 42, 15-29. 
2.  Boukouvala, F et al. J Pharm Innov 2013, 8 (1), 11-27. 
3.  Sarkar, A.; Wassgren, C. R.. Powder Technology 2012, 221, 325-336. 
4.  Rogers, A et al.  Ind Eng Chem Res 2013, 131015102838009. 
5.  Boukouvala, F.; Ierapetritou, M. G.,  Comput Chem Eng 2012, 36, 358-368. 
6.  Boukouvala, F.; Ierapetritou, M. In  AIChE Annual Meeting, Pittsburgh, PA, AIChE: Pittsburgh, PA, 2012. 

•  Process modeling capabilities 

‒  Supplement experimental work during process 
development1 

‒  Design and test control strategies 

‒  Flowsheet models2, Discrete element method3 

•  Process analysis 

‒  Sensitivity analysis4 – identify critical process 
parameters, control variables 

‒  Flexibility and feasibility analysis5 – design 
space and process robustness 

•  Process optimization6 

‒  Determine optimal process design and 
operating conditions subject to product quality 
and process operating constraints 
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Challenges for a flowsheet model for solids 

Critical material properties 
•  Lack of universal set throughout processes and industries 
•  Inherent variability in powder material properties & distributed parameters 
•  Lack of technology for monitoring desired material properties online 
 

Critical process operating variables 
•  Lack of correlation between operating variables and material properties 
•  No control strategies 
 

Modeling work 
•  Majority: Discrete Element Method (DEM) simulationsà computationally expensive 
•  In recent literature: plethora of experimental studies & empirical correlations of certain 

inputs/outputs & specific materials 
•  Dynamic reduced order models are needed: 

–  First-principle based 
–  Population balance models 
–  Data based models 
	  Werther,	  J.,	  et	  al.	  Computers	  &	  Chemical	  Engineering	  23(11-‐12)	  1773-‐1782	  

Boukouvala,	  F.	  et	  al.	  Computers	  &	  Chemical	  Engineering.	  42(11)	  30-‐47	  
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Ideal Development of a Pharmaceutical Process 
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Given a Formulation 
 

Characterize Powders using Universal Tests 
 

Evaluate Unit Operation Models using Powder Properties 
 

Create the Design Space for Individual Unit Ops 
 

Design the Process 
 

Build a Flowsheet Model 
 

Develop the Design Space of the Overall Process and Optimize 
 

Determine Operating Parameters and Control Strategies 
 

Validate using Experimental Data 
 

Asses Process Sensitivities and Risks 



Integrated Process Models 
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Unit Operation Models: Direct Compaction 

FEEDERS: 
Model: Delay Differential 
Equation 

MIXER: 
Model: Population 
Balance model 

HOPPER: 
Model: Mass flow buffer tank 
model 
 
 

TABLET PRESS: 
Model: Heckel equation & feed 
frame residence time model 
 
 

DIRECT 
COMPACTION 

rpm 
d50,ρ 
Fset 

d50,ρ 
Fout 

rpm 
d50,ρi 
Fin,Ci 

d50,ρ 
Fout, Ci, 
RSD 

H, Doutlet d50,ρ 
Fin,Ci, 
RSD 

d50,ρ 
Fout, Ci, 
RSD 

P, rpm d50,ρ 
Fin,Ci, 
RSD 

ε, σ, Ci, 
Fout 

DISSOLUTION: 
Model: Fick’s second Law 
 
 
 
 

h, r ε, d50 tdiss 

•  Individual	  unit	  operaBon	  models	  consist	  of	  a	  series	  of	  
equaBons	  meant	  to	  describe	  process	  physics	  and	  
dynamics	  

•  Unit	  operaBon	  equaBons	  can	  be	  combined	  sequenBally	  
to	  represent	  enBre	  manufacturing	  processes	  
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•  In CFD simulation: Discretize into finite elementsà solve set of equations 
for specific elementà calculate continuous variable values (T,P). 

•  In a DEM simulationà discrete elements (particles)à How do we extract 
information??? 

–  Discretize geometry and extract average information about number of particles 
inside each compartment. Consider “unreliable means” as missing 

BUT how to discretize? 
ü Dense enough to capture 
spatial variation 
ü Coarse enough to have large 
number of particles inside each 
element 

Latent Variable ROM based on DEM 

Very few or no particles: 
Set equal to zero  

Large enough number of 
particles:  

Use average value 
 
 
 
 

Few number of particles: 
Consider as missing data 

(impute) 
 
 
 
 



Discrete Element Reduced-Order Modeling 
Methodology 
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1.	  DOE	  –	  
parameter	  
variaBon	  

2.	  DiscreBze	  
process	  
geometry	  

4.	  Obtain	  
response	  
data	  (Y)	  

3.	  Extract	  
state	  data	  (Z)	  

5.	  Pre-‐process	  
state	  and	  
response	  data	  

6.	  Reduce	  
dimensionality	  of	  
state	  data	  (PCA)	  

7.	  Develop	  a	  mapping	  
between	  input	  space	  (X)	  
and	  reduced	  state	  space	  
(PCA	  scores)	  

8.	  Develop	  a	  mapping	  between	  
input	  parameters	  (X)	  and	  output	  
space	  (Y)	  	  

Input	  Space	  

State	  Space	  

Output	  Space	  

NxpZ ∈ℜ

NxnX ∈ℜ NxmY ∈ℜ

X T→



Steady State Case Study 

Ux	   Uy	   Uz	  

%	  MSE	   28%	   19%	   21%	  

PredicBon	  error	  for	  RSD	  (1	  case):	  1%	  
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•  Velocity	  and	  RSD	  predicBons	  have	  good	  accuracy	  
•  Velocity	  predicBon	  can	  be	  used	  directly	  in	  PBM	  

model	  
•  PredicBon	  of	  RSD	  can	  be	  used	  for	  surrogate-‐based	  

modeling	  or	  sensiBvity	  analysis	  applicaBons	  	  

Predicted	  ux	  vs.	  ux	  obtained	  from	  DEM	  23	  seconds	  a_er	  change	  from	  160	  to	  250	  rpms	  

Dynamic Case Study 

Ux	   Uy	   Uz	   RSD	  

%	  MSE	   0.55%	   0.96%	   1.13%	   1.07%	  
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DESIGN SPACE 

How much uncertainty can a process tolerate? 



•  “Flexibility of a process is defined as its 
capability to maintain feasible 
operation for a range of uncertain 
conditions that may be encountered 
during operation”1,2 

•  “..The multidimensional combination 
and interaction of input variables and 
process parameters that have been 
demonstrated to provide assurance of 
quality…” 

 
 
 
 
 
 

•  No clearly defined method about how to 
identify a process DS3 

                              

1 Halemane et al. (1983), AIChE Journal. 
2 Floudas et al. (2001), IECR 
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Design Space Flexibility 
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3 Lepore, J., & Spavins, J. Journal of Pharmaceutical Innovation, 2008 
4 Boukouvala et. al, Journal of Pharmaceutical Innovation, 2010 



Black-box Process Feasibility 
Goal is to locate boundaries of feasible operation: 
•  When multiple constraints are present 
•  Closed form expression for constraints may not be available 
•  When discrete designs are possible 

Probability of u=0: boundary 
⎟⎟⎠

⎞
⎜⎜⎝

⎛ −
=

s
y

sxIE pred
feas

0
)]([ φ

Model uncertainty 

1Jones et al. 1998 
2Boukouvala et. al, Computers and Chemical Engineering, (36), 2012  
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Design Space of Continuous blender 

We define feasibility:  
•  Since we want to minimize the output 
RSD, we set a maximum threshold value 
that can be tolerated (RSDmax) 

•  If the predicted output is lower, it’s 
feasible 
• If the predicted output is higher, it’s 
infeasible 

Where:  
i: design 
m: total number designs 
n: number of input variables  
βj: RSM coefficients 
zj: input variables  
xi: response surface produced for 
each design i 
 

min/max    
s.t.   

∑m

i ii xy

∑ =
=m

i iy1 1

{ }miy 1,0∈
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j

i
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Constraint to 
make sure only 
one design is 
chosen 

Introduce binary variables for each design (m) and form a 
MINLP problem: 
 

At high Flow Rates, low 
RPMà  

use forward blade 
configuration 

1.0max =RSD

Boukouvala et. Al, Journal of Pharmaceutical Innovation, 2010 



OPTIMIZATION 

Inverse problem: 
Based on desired 

properties, what should the 
design of the flowsheet be? 

Flowsheet design 

Material 
properties 

Economic  
and 

operating 
constraints 

Product 
properties 



Surrogate Based Optimization:  
Proposed Methodology 

•  CombinaBon	  of	  global	  search	  (iniBally)	  
with	  local	  search	  (final	  stage)	  

•  IncorporaBon	  of	  a	  black-‐box	  feasibility	  
stage	  to	  idenBfy	  form	  of	  feasible	  region	  
	  

•  Final	  local	  trust-‐region	  approach	  by	  
allowing	  mulBple	  starBng	  points	  if	  
clusters	  of	  promising	  feasible	  points	  is	  
idenBfied	  

•  AlleviaBon	  of	  noise	  effects	  through	  a	  
stochasBc	  kriging	  model	  
‒  heteroscedasBc	  variance	  case	  

	  

IniBally	  sample	  
enBre	  region	  

Refine	  in	  boundary	  
regions	  to	  map	  
feasible	  region	  
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Boukouvala, F., Ierapetritou, M AIChE Journal. Volume 60, Issue 7, pages 2462–2474, July 2014. 



Process Optimization 
•  OBJECTIVE: minimize cost of a 1 day operation of continuous direct compaction 
•  DECISION VARIABLES: process capacities, operating conditions, throughput, refill  strategy 
•  SUBJECT TO: Process capacity bound constraints, Product quality constraints, Minimum production 

requirement 
•  Leads to an optimization of an expensive-to-evaluate model, with complex constraints and uncertainty: 

SURROGATE SIMULATION-BASED OPTIMIZATION 

23 

Step 1: Formulate 
objective and constraints 

Step 3: Build surrogate model and 
optimize. Approximate uncertainty 

Uncertainty surface 

Response surface 
Op.mal	  cost:	  $	  153892	  	  

Step 2: Flowsheet simulations for 
different conditions based on DOE 

Output Space 

Input Space 

Variable	   Op.mum	  

Ftotal(kg/h)	   54	  

Mixer	  rpm	   102	  

CMgSt	  (w/w)	   0.0092	  

RL(%)	   54	  

Vhopper	  (m3)	   0.03	  

Pcomp(Pa)	   1042	  

Adaptive 
sampling 



Conclusions and future goals 
 
•  As the industry is moving to advanced manufacturing solutions, 

process intensification will be in the center of attention.    

•  There is a need for predictive models for optimization of process 
design and operations  

•  Reduced order modeling techniques are needed, due to the 
complexity of models necessary for complex pharmaceutical 
processes 

 
•  Technologies are transferrable to other powder processing industries 

such as food, consumer goods.  

•  As flowsheet models are being used, flowsheet synthesis framework 
will be developed to design process for any new formulation 

 
 



Mo.va.on:	  ExhausBng	  petroleum	  resources	  have	  prompted	  the	  development	  of	  sustainable	  
biorefinery	  to	  produce	  biofuel	  and	  bio-‐chemicals	  from	  biomass	  feedstocks.	  	  
Objec.ves:	  

§  Perform	  techno-‐economic	  analysis	  on	  the	  producBons	  of	  biobased	  chemicals	  and	  esBmate	  the	  
minimum	  cost	  of	  the	  products	  	  

§  Apply	  life	  cycle	  assessment	  to	  evaluate	  the	  environmental	  impacts	  
§  Implement	  process	  synthesis	  and	  opBmizaBon	  to	  achieve	  an	  opBmal	  process	  diagram	  	  

Accomplishments:	  

Process Modeling and Optimization of Biorefinery 
Zhaojia Lin    

Process Synthesis and 
Optimization 

Techno-Economic Analysis 
Experimental	  Data	  

Process	  Design	  

Discounted	  Cash	  Flow	   Biomass 
feedstock

Catalytical 
conversion

Biphasic 
reaction

Fermentation

Separation units

.

.

.

.

.

.

Catalytical 
conversion

.

.

.

. . .

.

.

.

. . . Bioproducts

Separation units Separation units

Life Cycle Assessment 
Aspen	  plus	  
simulaBon	  

LCA	  so_ware	  
Inventory	  

Aspen	  Energy	  
Analyzer	  

HEN	  
 

Energy	  
flow	  
 

•  Black-‐Box	  opBmizaBon	  and	  synthesis	  
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