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•  Process development challenges 

‒  Time pressure for clinical supply delivery 

‒  Uncertainty throughout development process 
‒  Unique physical properties of APIs 
‒  Sequential scale-up of batch processes 
 

•  Economic challenges 
‒  Up to 27% of revenues spent on manufacturing costs 

‒  Increased global competition, generics manufacturers 

•  Regulatory concerns 
‒  Quality by Design (QbD) – companies need increased process understanding 

‒  Inherent variability in performance and sampling  
 

Need efficient and robust manufacturing strategies in order to remain 
competitive 

McKenzie, P. K et al. AIChE Journal 2006, 52 (12). 
Buchholz, S. Chem Eng Process  2010, 49 (10), 993-995 
Basu, P. et al. J Pharm Innov 2008, 30-40. 
Shah, N. Comput Chem Eng 2004, 28 (6-7), 929-941 

Current state of Pharmaceutical Industry 
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•  Pharmaceutical industry is innovative in development of new drugs BUT 
manufacturing is primitive compared to other chemical industries 

•  Given a new formulation/product:  
 

•  Production predominantly in BATCH mode 
•  A batch is produced   à  samples are tested à batch FAILS/PASSES 
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Current state of Pharmaceutical Industry 
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Batch vs. Continuous Processes 
 
}  Intermediate steps in batch, not continuous 
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Batch vs. Continuous Processes 
 
}  Continuous manufacturing has no lag times in production, while batch has delays 

due to washing, blending and comilling between batches (no product being made) 

Continuous 
after X time 

Washing, down time 
blending, comilling 

Actual Time 

N
um

be
r o

f T
ab

le
ts

 M
an

uf
ac

tu
re

d 

3 Batches 
after X time 
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Increased productivity (No. tablets in X time) 

Set Up 

Start Operation 
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Blending, 
comilling 

Filling Feed 
Frame 

Remember: Product is only manufactured 
when its at the tablet press 
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Batch vs. Continuous Processes 
•  Batch 

Cons 
–  Productivity is low 

–  Down time 
–  Set process design and operation 
–  Powder exposure during process 
–  Scale-up necessary 

–  Time and new equipment 
–  Harder to control 

–  Wasted batches 
–  Within-batch variability 

–  Multiple operators required 

Pros 
–  Many products are produced in 

smaller quantities 
–  Existing ‘know-how’ and fillings 

•  Continuous 
Cons 
–  Novel method 

–  Few regulatory fillings 
–  Requires engineering understanding 
 

Pros 
–  High Productivity 

–  No down time in process 
–  Set design, but varying parameters 

–  Flexible operation 
–  Enclosed powders = no exposure 
–  Less scale-up studies 

–  Extended operation = scale up 
–  Better control 

–  No failed batches 
–  Automated process = less operators 
–  Smaller footprint and equipment 
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Advantages of Continuous Processes 
Some of the major advantages of continuous systems include: 

–  Increased productivity 
•  Eliminate down time during operation 

–  Fewer scale-up studies 
•  Parallelization, increased throughput3 

•  Reduced time to market 

–  Small and compact equipment  
•  Reduced capital cost and utilities requirement1,2 

•  Small area footprint 

–  Ability to implement control strategies4 

•  Real-time feedback control, Model Predictive Control (MPC) 

•  Enhanced process robustness 

–  Advanced computational tools – process systems engineering5  

1.  Seifert, T. et al. Chem Eng Process 2012, 52, 140-150. 
2.  Schaber, S. D et al. Ind Eng Chem Res 2011, 50 (17), 10083-10092. 
3.  Plumb, K., Chem Eng Res Des 2005, 83 (A6), 730-738. 
4.  Singh, R.; et al. Int J of Pharm 2012, 438 (1-2), 307-26. 
5.  Gernaey, K. V. et al. Comput Chem Eng 2012, 42, 15-29. 
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Process Systems Engineering 

1.  Gernaey, K. V. et al. Comput Chem Eng 2012, 42, 15-29. 
2.  Boukouvala, F et al. J Pharm Innov 2013, 8 (1), 11-27. 
3.  Sarkar, A.; Wassgren, C. R.. Powder Technology 2012, 221, 325-336. 
4.  Rogers, A et al.  Ind Eng Chem Res 2013, 131015102838009. 
5.  Boukouvala, F.; Ierapetritou, M. G.,  Comput Chem Eng 2012, 36, 358-368. 
6.  Boukouvala, F.; Ierapetritou, M. In  AIChE Annual Meeting, Pittsburgh, PA, AIChE: Pittsburgh, PA, 2012. 

•  Process modeling capabilities 

‒  Supplement experimental work during process 
development1 

‒  Design and test control strategies 

‒  Flowsheet models2, Discrete element method3 

•  Process analysis 

‒  Sensitivity analysis4 – identify critical process 
parameters, control variables 

‒  Flexibility and feasibility analysis5 – design 
space and process robustness 

•  Process optimization6 

‒  Determine optimal process design and 
operating conditions subject to product quality 
and process operating constraints 
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Challenges for a flowsheet model for solids 

Critical material properties 
•  Lack of universal set throughout processes and industries 
•  Inherent variability in powder material properties & distributed parameters 
•  Lack of technology for monitoring desired material properties online 
 

Critical process operating variables 
•  Lack of correlation between operating variables and material properties 
•  No control strategies 
 

Modeling work 
•  Majority: Discrete Element Method (DEM) simulationsà computationally expensive 
•  In recent literature: plethora of experimental studies & empirical correlations of certain 

inputs/outputs & specific materials 
•  Dynamic reduced order models are needed: 

–  First-principle based 
–  Population balance models 
–  Data based models 
	
  Werther,	
  J.,	
  et	
  al.	
  Computers	
  &	
  Chemical	
  Engineering	
  23(11-­‐12)	
  1773-­‐1782	
  

Boukouvala,	
  F.	
  et	
  al.	
  Computers	
  &	
  Chemical	
  Engineering.	
  42(11)	
  30-­‐47	
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Ideal Development of a Pharmaceutical Process 
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Given a Formulation 
 

Characterize Powders using Universal Tests 
 

Evaluate Unit Operation Models using Powder Properties 
 

Create the Design Space for Individual Unit Ops 
 

Design the Process 
 

Build a Flowsheet Model 
 

Develop the Design Space of the Overall Process and Optimize 
 

Determine Operating Parameters and Control Strategies 
 

Validate using Experimental Data 
 

Asses Process Sensitivities and Risks 



Integrated Process Models 
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Unit Operation Models: Direct Compaction 

FEEDERS: 
Model: Delay Differential 
Equation 

MIXER: 
Model: Population 
Balance model 

HOPPER: 
Model: Mass flow buffer tank 
model 
 
 

TABLET PRESS: 
Model: Heckel equation & feed 
frame residence time model 
 
 

DIRECT 
COMPACTION 

rpm 
d50,ρ 
Fset 

d50,ρ 
Fout 

rpm 
d50,ρi 
Fin,Ci 

d50,ρ 
Fout, Ci, 
RSD 

H, Doutlet d50,ρ 
Fin,Ci, 
RSD 

d50,ρ 
Fout, Ci, 
RSD 

P, rpm d50,ρ 
Fin,Ci, 
RSD 

ε, σ, Ci, 
Fout 

DISSOLUTION: 
Model: Fick’s second Law 
 
 
 
 

h, r ε, d50 tdiss 

•  Individual	
  unit	
  operaBon	
  models	
  consist	
  of	
  a	
  series	
  of	
  
equaBons	
  meant	
  to	
  describe	
  process	
  physics	
  and	
  
dynamics	
  

•  Unit	
  operaBon	
  equaBons	
  can	
  be	
  combined	
  sequenBally	
  
to	
  represent	
  enBre	
  manufacturing	
  processes	
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•  In CFD simulation: Discretize into finite elementsà solve set of equations 
for specific elementà calculate continuous variable values (T,P). 

•  In a DEM simulationà discrete elements (particles)à How do we extract 
information??? 

–  Discretize geometry and extract average information about number of particles 
inside each compartment. Consider “unreliable means” as missing 

BUT how to discretize? 
ü Dense enough to capture 
spatial variation 
ü Coarse enough to have large 
number of particles inside each 
element 

Latent Variable ROM based on DEM 

Very few or no particles: 
Set equal to zero  

Large enough number of 
particles:  

Use average value 
 
 
 
 

Few number of particles: 
Consider as missing data 

(impute) 
 
 
 
 



Discrete Element Reduced-Order Modeling 
Methodology 
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1.	
  DOE	
  –	
  
parameter	
  
variaBon	
  

2.	
  DiscreBze	
  
process	
  
geometry	
  

4.	
  Obtain	
  
response	
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  (Y)	
  

3.	
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state	
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5.	
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state	
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response	
  data	
  

6.	
  Reduce	
  
dimensionality	
  of	
  
state	
  data	
  (PCA)	
  

7.	
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  a	
  mapping	
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  input	
  space	
  (X)	
  
and	
  reduced	
  state	
  space	
  
(PCA	
  scores)	
  

8.	
  Develop	
  a	
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input	
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  (X)	
  and	
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space	
  (Y)	
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Steady State Case Study 

Ux	
   Uy	
   Uz	
  

%	
  MSE	
   28%	
   19%	
   21%	
  

PredicBon	
  error	
  for	
  RSD	
  (1	
  case):	
  1%	
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•  Velocity	
  and	
  RSD	
  predicBons	
  have	
  good	
  accuracy	
  
•  Velocity	
  predicBon	
  can	
  be	
  used	
  directly	
  in	
  PBM	
  

model	
  
•  PredicBon	
  of	
  RSD	
  can	
  be	
  used	
  for	
  surrogate-­‐based	
  

modeling	
  or	
  sensiBvity	
  analysis	
  applicaBons	
  	
  

Predicted	
  ux	
  vs.	
  ux	
  obtained	
  from	
  DEM	
  23	
  seconds	
  a_er	
  change	
  from	
  160	
  to	
  250	
  rpms	
  

Dynamic Case Study 

Ux	
   Uy	
   Uz	
   RSD	
  

%	
  MSE	
   0.55%	
   0.96%	
   1.13%	
   1.07%	
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DESIGN SPACE 

How much uncertainty can a process tolerate? 



•  “Flexibility of a process is defined as its 
capability to maintain feasible 
operation for a range of uncertain 
conditions that may be encountered 
during operation”1,2 

•  “..The multidimensional combination 
and interaction of input variables and 
process parameters that have been 
demonstrated to provide assurance of 
quality…” 

 
 
 
 
 
 

•  No clearly defined method about how to 
identify a process DS3 

                              

1 Halemane et al. (1983), AIChE Journal. 
2 Floudas et al. (2001), IECR 
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FDA’s “Design Space” vs. PSE’s Process Flexibility 

Design Space Flexibility 

     feasible 
     infeasible 

3 Lepore, J., & Spavins, J. Journal of Pharmaceutical Innovation, 2008 
4 Boukouvala et. al, Journal of Pharmaceutical Innovation, 2010 



Black-box Process Feasibility 
Goal is to locate boundaries of feasible operation: 
•  When multiple constraints are present 
•  Closed form expression for constraints may not be available 
•  When discrete designs are possible 

Probability of u=0: boundary 
⎟⎟⎠

⎞
⎜⎜⎝

⎛ −
=

s
y

sxIE pred
feas

0
)]([ φ

Model uncertainty 

1Jones et al. 1998 
2Boukouvala et. al, Computers and Chemical Engineering, (36), 2012  
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Design Space of Continuous blender 

We define feasibility:  
•  Since we want to minimize the output 
RSD, we set a maximum threshold value 
that can be tolerated (RSDmax) 

•  If the predicted output is lower, it’s 
feasible 
• If the predicted output is higher, it’s 
infeasible 

Where:  
i: design 
m: total number designs 
n: number of input variables  
βj: RSM coefficients 
zj: input variables  
xi: response surface produced for 
each design i 
 

min/max    
s.t.   

∑m

i ii xy

∑ =
=m

i iy1 1

{ }miy 1,0∈

    ...1,...1      )()()( kjmizzz upi
j

i
j

loi
j ==≤≤

Constraint to 
make sure only 
one design is 
chosen 

Introduce binary variables for each design (m) and form a 
MINLP problem: 
 

At high Flow Rates, low 
RPMà  

use forward blade 
configuration 

1.0max =RSD

Boukouvala et. Al, Journal of Pharmaceutical Innovation, 2010 



OPTIMIZATION 

Inverse problem: 
Based on desired 

properties, what should the 
design of the flowsheet be? 

Flowsheet design 

Material 
properties 

Economic  
and 

operating 
constraints 

Product 
properties 



Surrogate Based Optimization:  
Proposed Methodology 

•  CombinaBon	
  of	
  global	
  search	
  (iniBally)	
  
with	
  local	
  search	
  (final	
  stage)	
  

•  IncorporaBon	
  of	
  a	
  black-­‐box	
  feasibility	
  
stage	
  to	
  idenBfy	
  form	
  of	
  feasible	
  region	
  
	
  

•  Final	
  local	
  trust-­‐region	
  approach	
  by	
  
allowing	
  mulBple	
  starBng	
  points	
  if	
  
clusters	
  of	
  promising	
  feasible	
  points	
  is	
  
idenBfied	
  

•  AlleviaBon	
  of	
  noise	
  effects	
  through	
  a	
  
stochasBc	
  kriging	
  model	
  
‒  heteroscedasBc	
  variance	
  case	
  

	
  

IniBally	
  sample	
  
enBre	
  region	
  

Refine	
  in	
  boundary	
  
regions	
  to	
  map	
  
feasible	
  region	
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Boukouvala, F., Ierapetritou, M AIChE Journal. Volume 60, Issue 7, pages 2462–2474, July 2014. 



Process Optimization 
•  OBJECTIVE: minimize cost of a 1 day operation of continuous direct compaction 
•  DECISION VARIABLES: process capacities, operating conditions, throughput, refill  strategy 
•  SUBJECT TO: Process capacity bound constraints, Product quality constraints, Minimum production 

requirement 
•  Leads to an optimization of an expensive-to-evaluate model, with complex constraints and uncertainty: 

SURROGATE SIMULATION-BASED OPTIMIZATION 

23 

Step 1: Formulate 
objective and constraints 

Step 3: Build surrogate model and 
optimize. Approximate uncertainty 

Uncertainty surface 

Response surface 
Op.mal	
  cost:	
  $	
  153892	
  	
  

Step 2: Flowsheet simulations for 
different conditions based on DOE 

Output Space 

Input Space 

Variable	
   Op.mum	
  

Ftotal(kg/h)	
   54	
  

Mixer	
  rpm	
   102	
  

CMgSt	
  (w/w)	
   0.0092	
  

RL(%)	
   54	
  

Vhopper	
  (m3)	
   0.03	
  

Pcomp(Pa)	
   1042	
  

Adaptive 
sampling 



Conclusions and future goals 
 
•  As the industry is moving to advanced manufacturing solutions, 

process intensification will be in the center of attention.    

•  There is a need for predictive models for optimization of process 
design and operations  

•  Reduced order modeling techniques are needed, due to the 
complexity of models necessary for complex pharmaceutical 
processes 

 
•  Technologies are transferrable to other powder processing industries 

such as food, consumer goods.  

•  As flowsheet models are being used, flowsheet synthesis framework 
will be developed to design process for any new formulation 

 
 



Mo.va.on:	
  ExhausBng	
  petroleum	
  resources	
  have	
  prompted	
  the	
  development	
  of	
  sustainable	
  
biorefinery	
  to	
  produce	
  biofuel	
  and	
  bio-­‐chemicals	
  from	
  biomass	
  feedstocks.	
  	
  
Objec.ves:	
  

§  Perform	
  techno-­‐economic	
  analysis	
  on	
  the	
  producBons	
  of	
  biobased	
  chemicals	
  and	
  esBmate	
  the	
  
minimum	
  cost	
  of	
  the	
  products	
  	
  

§  Apply	
  life	
  cycle	
  assessment	
  to	
  evaluate	
  the	
  environmental	
  impacts	
  
§  Implement	
  process	
  synthesis	
  and	
  opBmizaBon	
  to	
  achieve	
  an	
  opBmal	
  process	
  diagram	
  	
  

Accomplishments:	
  

Process Modeling and Optimization of Biorefinery 
Zhaojia Lin    

Process Synthesis and 
Optimization 

Techno-Economic Analysis 
Experimental	
  Data	
  

Process	
  Design	
  

Discounted	
  Cash	
  Flow	
   Biomass 
feedstock

Catalytical 
conversion

Biphasic 
reaction

Fermentation

Separation units

.

.

.

.

.

.

Catalytical 
conversion

.

.

.

. . .

.

.

.

. . . Bioproducts

Separation units Separation units

Life Cycle Assessment 
Aspen	
  plus	
  
simulaBon	
  

LCA	
  so_ware	
  
Inventory	
  

Aspen	
  Energy	
  
Analyzer	
  

HEN	
  
 

Energy	
  
flow	
  
 

•  Black-­‐Box	
  opBmizaBon	
  and	
  synthesis	
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