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86% of primary energy Is chemical energy
4.6% of primary energy from biomass

L B Lawrence Livermore

Estimated U.S. Energy Use in 2013: ~97.4 Quads National Laboratory
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Destruction of Exergy from
Waste Heat Rejection

Spark Ignition
Automotive
Diesel Automotive | 22-35% (7-15%)

Large Stationary 25-41%
(1-17.1 MW, NG)

Gas Turbine 45-759
(1-40MW, NG)

34-459% (8-17%) 17-26% (1-3%)

16-35% (1-3%)
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Heywood, “Internal combustion engine fundamentals”, 1989; C.D. Rakopoulos, “Second-law analyses applied to internal combustion
engines operation”, 2006; Wagner, “Defining Engine Efficiency Limits”, 2011; Wagner,” Achieving and Demonstrating Vehicle
Technologies Engine Fuel Efficiency Milestones”, 2009; Wartsilla Engine Specifications 2013; EPA, Catalog of CHP Technologies,
2008 : J.H. Horlock “Advanced Gas Turbine Cycles: A Brief Review of Power Generation Thermodynamics”, 2003



Combustion Destruction of Fuel Exergy
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Chemical Reaction Waste Heat Recovery
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Supercritical water
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Why Aqueous Phase
Reformation?

« Reform renewable plant-derived or
waste feedstocks that are not volatile

and or are available as dilute aqueous
solutions

 Lower reaction temperatures compared

to gas phase reformation

»Increase potential waste heat recovery
»Reduce cost



APR Waste Heat Recovery
Technology Goals for ICEs

 Replace over 30-100% of required
fossil fuel with renewable biomass-
derived or waste feedstocks

* Increase overall system efficiency by
up to 25%

» Reduce emissions of NO, by up to
95%, while reducing or maintaining
low CO, HC, and PM emissions



APR Challenges

e Catalysts and reaction kinetics in early
stage of understanding

e Side products can lead to incomplete
conversion

 \Water evaporation into dry gases
consumes a portion of recovered heat
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Pinch Analysis: Fraction of Exhaust Thermal
Energy Converted to Chemical Energy

T, 873°C 33% 43%
(G3615, 1MW shaft,

N=32.3%)

T 929°C 24% 41%

(G36158B, 1.4MW
shaft, N=33.8%)

T... 467°C 12% 37%

e

(G3615LE, 1MW
shaft, N=34.4%)




Estimated capital and installation costs of glycerol
APR waste heat recovery system per kW of
iIncreased electricity production for NG fueled ICEs
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Current APR Experiments

 Determine hydrogen production rates at
practical temperatures and pressures
using in-house synthesized state of the
art catalysts

« Measure effluent liquid species
(products vs. disposal costs)

e Recirculation to iIncrease conversion
and concentrate side products



Future APR Experiments

 Real biomass derived and waste
feedstocks, impact of contaminants
and pretreatment methods

* Innovative reactor designs, membrane
reactor, and integrated heat exchanger

reactor

 Near-critical and Supercritical water
gasification of effluent for complete
conversion
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