Diesel displacement in the sugarcane ethanol life-cycle: a comparative analysis of different integrated systems

### Simone P. Souza<sup>1,2</sup>; Joaquim E. A. Seabra<sup>2</sup>

<sup>1</sup>Brazilian Bioethanol Science and Technology Laboratory <sup>2</sup>Faculty of Mechanical Engineering, University of Campinas





UNICAMP



#### How much did the sector consume?

→ 2.7 billion liters of diesel in 2014 season → 4% of the national consumption (EPE, 2013).

 $\rightarrow$  Upward trend due to the mechanical harvesting.

**<u>Brazil</u>**:  $\rightarrow$  3<sup>rd</sup> /4<sup>th</sup> largest producer of biodiesel

# Goal

production systems applied to the <u>sugarcane sector</u> in Brazil focused on <u>diesel displacement</u>. We assessed the e<u>nergy balance</u> and the <u>GHG emissions</u>.

**R** The integrated systems are:

- ∽ Soybean-sugarcane
- 🛯 Algae-sugarcane
- 🛯 Palm-sugarcane



 $\bigcirc$  <u>Life Cycle Assessment</u>  $\rightarrow$  Well-to-gate analysis

- GHG emission
- 🛯 Fossil Energy Use

 $\bowtie$  <u>Uncertainty</u>: Monte-Carlo simulation  $\rightarrow$  Crystal Ball<sup>®</sup>

- R Data
  - - Sugarcane mills, biodiesel industries, sugarcane suppliers in the States of São Paulo, Mato Grosso and Goiás.
  - <u> Algae</u>

- R Palm sector

### **SYSTEM 1**: Soybean-Sugarcane Integrated Production



# SYSTEM 1: important remarks

### Conab, 2014/15) Area: 9,000,000 ha

**G** Production: 672,000,000 tons



**CR** Soybean (Conab, 2014/15)

- 🛯 Area: 30,000,000 ha
- Production: 86,000,000 tons
- ✓ 80% of the biodiesel source



#### Reference: CONAB, 2014.

## **SYSTEM 2**: Algae-Sugarcane Integrated Production



\* **Note**: dark grey boxes: processes; white boxes: products consumed inside the system; green boxes: output products; orange boundary: energy flow, which supplies all the process; and black arrows: mass flow.

# SYSTEM 2: important remarks

Reproduction is limited by the  $\underline{CO_2}$  <u>availability</u>.

Que to a favorable climate, Brazil has the potential to become a major algae producer (Franz et al., 2012).

### **SYSTEM 3**: Palm-Sugarcane Integrated Production



\* **Note**: dark grey boxes: processes; white boxes: products consumed inside the system; green boxes: output products; orange boundary: energy flow, which supplies all the process; and black arrows: mass flow.

# SYSTEM 3: important remarks

Realm → main feedstock used for oil production worldwide (food and chemical industries).

 Over ten years, the palm oil has remained as the lowest price in the <u>international market (MPOB</u>, 2012).

 <u>Embrapa experiment</u>: Promising results of palm under irrigated conditions in Cerrado region.
<u>Irrigation</u>: POME and vinasse RESULTS...





Algae-Sugarcane Palm-Sugarcane

## Energy Flow

### **REFERENCE: 1 TON OF SUGARCANE = 18.8 kg ALGAE (DW)**



# Fossil Energy Use





## GHG emissions



## **Final Remarks**

Algae-Cane and Palm-Cane integration are the best options in terms of environmental aspects.

### HOWEVER...

- Soybean is a well-established culture and in short-term it seems to be the best option to be integrated to the sugarcane sector.
- Other opportunity costs can discourage the diesel displacement. Ex: biodiesel auction, high oil price market, etc.

## Takeaway message

✓ 80% of the biodiesel factories use methanol → US\$ 250 million was spent in methanol importation in 2012

Consumption of biodiesel

Brazil imported 8.1 billion liters of diesel, equivalent to
6.6 billion dollars

C Diesel consumption will increase 65% until 2030 [MME, 2007] → 8 million ha of soybean (B5)







# THANK YOU FOR YOUR ATTENTION!!!

Contact: Simone P Souza <u>sp.souza@yahoo.com.br</u> <u>sps@fem.unicamp.br</u>