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Actors’ decisions and (in)actions matter
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Observation 1: Ethanol Industry Boom and Bust

* The US Energy Independent and
Security Act of 2007 :
— 1.6 billion gallons in 2000 to 13.2
billion gallons in 2010
* Biorefineries will likely face large
financial uncertainties
— Dried up capital due to the credit

crunch and the recent expiration of a
federal subsidy for ethanol blenders

— Recent drought has caused a spike in
corn price leading to temporary shut
down or scale back production of
many ethanol refineries

— Increased price of corn has squeezed
refineries’ profit margin below the
sustainable level

Biofuels.supply chain network is a complex system 4
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Observation 2: Aviation Biofuels Potentials

* |n the United States, the aviation
sector is responsible for about
11% of the total transportation
GHG emissions.

Biojet fuel
contribution

nnes of CO,

Additional
technologles
and blofuels | Carbon-neutra

* Aviation emission reduction goal:

|
//

— carbon neutral growth by

-50% by 2050

2020 .
— GHG em|SS|OnS reductlon by 2005 2000 2020 2000 2040 2050
50% Compa red to the 2005 Source: Air Transport Action Group

baseline level by 2050

For biojet fuels to achieve its GHG emission reduction potential,
technical and economic hurdlessmust be overcome
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Observation 3:

Many policymaking efforts on System Change involving multi-actors end up

in Delay, Deadlock, or Court
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Biofuels production and use = an industrial

ecosystems

Features:

an ecosystem consists of
multiple agents or actors

multiple resources

decision is based on
perceived payoff

imperfect and obsolete
knowledge to base their
decisions

lacks a central controller

decisions are made in an
uncoordinated fashion and
asynchronously
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Dynamics of Biofuels Supply Chain Network

Farmers' Biorefi.neries’ UserS’
Options Options Options
|
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Decision 1: Decision 2: Decision 1: B 25 Decision 1: Decision 2:
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f :fraction of agents taking Decision 1 (G,-G,)

o, :evaluation rate

p : preference probability function

G, : payoff from taking Decision 1

G, : payoff from taking Decision 2

o : payoff uncertainty

T : timedelay— "
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Behavior of Supply Chain Networ
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Multi-Actor Life Cycle Assessment

 Traditional LCA studies ¢ Multi-Actor LCA:

focus: — Explicit consideration of

— mostly on the supply chain actors
environmental
performance of
technology options

* Expected Results:

— Better estimate of
feedstock penetration
level and life cycle
emissions impact

— largely left out the
economic aspect of the
system in question

— or at most include
economic performance
as a separate part
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Actor-related
factors

Policy-makers
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No
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No
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Policy-driven

bio-jet demand

Airlines bio-jet
costs savings >
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Airlines bio-jet
demand

Demand >
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Bio-refinery
NPV & IRR >
Threshold?

International Policy Drivers
* Global emission reduction target
* International carbon price

v

National Policy measures:
* Legislations

* Regulations

* National carbon price
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Fuel unit production cost (US$ per gallon)

Result: production cost, NPV, IRR
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Taking uncertainties into account
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RESULTS: BIOFUELS EQUITY ISSUE
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Preliminary Result (2)
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Biorefineries will be main beneficiaries
— But are exposed to financial risks

Policymakers (incl. consumers and taxpayers) will bear
most the financial burdens

@ Significant

¢ Some/ Indirect

O None/ Insignificant

Agusdinata, D.B., “System Design Framework for Equity/ Fairness among Actors, “ Procedia Computer Science, Volume 16, ,
Pages 1122-1131, 2013




Concluding Remarks

 Added values of the multi-actor system approach:
— Insights:

* Understanding of collective behavior resulting from decisions
of individual actors

* A decision may perfectly be rational from an actor perspective
but could be detrimental from the view of overall system

— Policy implications:
* Policy design more aligned to actors’ interests
* Quantitative basis for negotiation and compromise

* Challenges:
— Calibration of the parameter space

— Validation of the overall system behavior with
empirical data or expert opinien
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EXTRA SLIDES
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Egalitarianism

Exploring the Meaning of Falrness
Equity Principles SE B3

Spoiler of equilibrium
pays

Ability to pay

Grandfathering

Merit




Approach

 most biofuel supply chain
studies to date take the
bio-refinery as the default
customer under the
assumption that the bio-
refinery is in control of the
entire supply chain.

* Most of these studies
adopted the classical
production/distribution
MIP approach in order to
design a network that
maximizes bio-refinery
profits

As the SC network consist of a large
number of firms from multiple
interrelated industries, a complex
adaptive system (CAS) perspective
allows a supply network manager to
make local decisions while
considering the complexity of the
overall system.

Furthermore, it is argued that due to
the prevalence of the use of
information technology, supply
chains have greatly increased in
complexity almost to the level of
biological system.

In this environment there is a need
for coordination strategies among
supply chain actors to achieve an
adaptive collective behavior.
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SYSTEM DESIGN FOR
EQUITY/FAIRNESS AMONG ACTORS
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A System-of-Systems Definition for the
Sustainability of Aviation Biofuels

JS°S: Aviation Life Cycle Emissions

f
LEGel Go_vernment
' Environmental
Policy System
B Level
alLevel Aircraft Alternative
Technology > Jet Fuel

System : System

The common system objective, J >°° transcends all individual
objectives of actors i
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