

(Progress toward) The Continuous-Flow Solid Acid Catalyst Hydrothermal Biorefinery

Michael Timko and Geoffrey Tompsett

Department of Chemical Engineering Worcester Polytechnic Institute

RCN Conference on Pan American Biofuels & Bioenergy Sustainability July 24

Catalysis and Reaction Engineering Research at WPI Green Chemistry & Engineering Meets Sustainable Energy

Bioenergy Challenges

- \triangleright Capital costs of large-scale cellulosic biorefineries are massive (billions of \$)
	- Low capital technologies are required
	- Technologies that leverage existing infrastructure are desirable
- \triangleright Operating costs remain high (about double that for petroleum fuels)
	- □ Efficient technologies are required
	- Must be feedstock flexible and appropriate for waste biomass
	- Must make use of all biomass components
	- Multiple product streams (\$) are required
- \triangleright Making biofuel production sustainable has not been achieved
	- □ Land/water use rates
	- Waste production
- \triangleright Transportation costs and energies remain high
	- Biomass is a distributed resource with low energy density grown in remote, rural areas
	- Small-scale, deployable biomass conversion may reduce transportation costs and energies

High Temperature Water Processes for Valorization of Renewable Resources

- Rapid reaction rates (small reactors)
- No feedstock drying
- Feedstock flexibility (including residues)
- Low oxygen content liquid product with high stability
-

Deployable Biomass Conversion

Advantages:

- **Reduced capital costs**
- **Incremental costs of adding capacity**
- **Reduced transportation costs and energy consumption due to decreased liquid volumes to be shipped (compared to large solids volumes)**
- **Appropriate for remote rural areas Challenges:**
- **Compact technologies (rapid reactions)**
- **Product stability and carbon utilization**
- **Solids handling & feedstock flexibility**

To make biofuels at the source

Mobile biofuels production platform

Distributed Pre-treatment Concept: Reduced Operations and Capital Costs

Why Hydrothermal? Techno-Economic Considerations

 \triangleright Previous economic analysis suggests that pyrolysis (\$2/gge) is more economical than either biochemical (\$5/gge) or hydrothermal liquefaction (HTL) (\$4/gge)

Data from Wright et al., 2010 and Zhu et al. 2014

- \triangleright Pyrolysis requires drying step and is limited by bio-oil product quality and stability
- \triangleright HTL offers flexibility
	- □ Liquefaction to produce a bio-oil with superior properties compared to pyrolysis
	- Pre-treatment to maximize sugar yield for APP or fermentation

Primary Technical Challenge: Controlling chemistry during HTL

nc-SCW $^{\prime\prime}$ Oil SCWU Window["] 218 Pressure (bar) critical point **DD** 0.006 fast-pyrolysis **DAP** 100 374 0.01 Temperature (°C)

Timko et al. *J SCF*, submitted

Techniques to Control Reactivity

1) Reaction Engineering

Heat rate

Residence time control

2) Catalyst Engineering

Making active catalysts stable Making stable materials active

Hydrothermal Batch Reactor

Reactor

500 mL 316-ss Parr reactor rated to 2000 psi at 350 °C experiments performed at 300 °C reaction time $= 10$ min after heat up agitation rate $= 500$ rpm

Feed

Size selected pine sawdust 10 wt% slurry

Organic Carbon Yield and Heat Rate

- Initially performed to investigate effect of particle size
- Instead, heating rate played an important role
- Qualitatively similar to HTL of grasses (Zhang et al. *J. Applied Anal. Pyrolysis,* 2009)
- Experiments in progress to investigate heating rate effects in batch reactor
- **Points to the importance of rapid heat rates in continuous flow reactors**

Heat Transfer Rate in Continuous Flow

- In collaboration with MIT in a separate study, the WPI team has been studying rapid heating in a mixing tee reactor
- Biomass fed cold from the top port
- Water superheated (>350 C) to achieve rapid heat rate

(Rhagavan et al. *J. Supercritical Fluids*, 2014) ¹²

Temperature TOS Performance

Controlling Reactivity - Catalysis

- Catalyst allows temperature to be decreased, improving selectivity
- \triangleright Catalyst must be active, selective, and stable

 \triangleright Additional requirements placed on the material for COST & SUSTAINABILITY

We address stability and activity 2 ways

Hydrothermal char as a renewable catalyst material

- The material itself is **stable**
- **Need – impart activity**
- **Organic-modified zeolites** as a hydrothermally stable catalyst with well-defined pore structures
	- The material is **active and selective**
	- **Need – impart stability**

Char Materials as Catalysts

- *Renewable source (sugars, cellulose, hydrolyzates, biomass)*
- *Inherently stable in hightemperature water*
- *Can be functionalized (-OH, -SO3, N)*
- x *Low intrinsic catalytic activity*
- x *Require harsh conditions to become catalytic (concentrated acid treatment)*

Here, I will focus specifically on hydrothermal chars formed by carbonaceous feedstocks in a water-rich **environment** 16

Ball-milling to activate hydrochars for catalyst applications

Ball-Milling

- *Energy imparted by ball impacts*
- *Solvent-free*
- *No need for downstream processing*
- x *Mechanism not understood*

We performed fundamental studies to improve our understanding of chemical processes that occur during **ball milling** 17

Raman Spectroscopy to Analyze Chars

Assignments based on Li et al. (Fuel, 2006)

Vibrational spectra provide significant information on carboncarbon connectivity

Subject char to ball milling and track structural changes to develop modification protocol

Tompsett et al., Carbon, submitted

Raman Shows Substantial Structural Changes during Ball Milling

 $D/(G_R+V_R+V_L)$ implies that alkyl chains disappear

 D/G_R implies that small aromatic clusters form larger ones

 S/G_R , implies that bridgehead carbons disappear

Char Reactions and Radical Intermediates

This mechanism explains loss of bridgehead carbons, disappearance of small aromatic clusters, and formation of larger aromatic clusters

Suggests formation of radical intermediates – ESR!

ESR Measures Radical Content

As predicted, radical signal rapidly increases and then decreases with larger milling times

Conceptual Kinetic Model

Organic-Modified Zeolites

Microporous material (<10 Å) with alumina substitution, zeolites are strong Brønsted acids

The more alumina, the more active – but the less water stable!

Solution proposed by Resasco et al. – kinetic stability using organic modifiers

Water cannot enter the pores – zeolite remains stable

But, what about reactant access?

23

Organic-modified ZSM-5

Common industrial zeolite with 4.46 Å pores and 6.36 Å cavities

Stable with high Al_2O_3 substitution $(-40:1$ SiO₂/Al₂O₃ ratio is commercial)

Use silanation chemistry to coat with hydrophobic molecules

Contact Angle – confirms hydrophobic surface

Phase behavior – confirms hydrophobic solution behavior

FTIR Confirms Presence of Alkyl Groups

TGA Confirms Thermal Stability

Sorption Experiments

Equilibrium Uptake

Cyclohexanol uptake increases with coating thickness

Hexanol shows a more modest effect – need to investigate C_6 coating in more detail

Possible explanation, uptake into zeolite pores and into organic coating

Relative contributions depend on adsorbate sizes and polarities 30

Acknowledgments

