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Bioenergy Challenges

» Capital costs of large-scale cellulosic biorefineries are massive (billions of $)
O Low capital technologies are required
O Technologies that leverage existing infrastructure are desirable
» Operating costs remain high (about double that for petroleum fuels)
a Efficient technologies are required
O Must be feedstock flexible and appropriate for waste biomass
O Must make use of all biomass components
O Multiple product streams ($) are required
» Making biofuel production sustainable has not been achieved
O Land/water use rates
O Waste production
» Transportation costs and energies remain high

O Biomass is a distributed resource with low energy density grown in
remote, rural areas

a Small-scale, deployable biomass conversion may reduce transportation
costs and energies



High Temperature Water Processes for
Valorization of Renewable Resources

Rapid reaction rates (small reactors)
No feedstock drying
Feedstock flexibility (including residues)
Low oxygen content liquid product with high stability
Flexibility — pre-treatment, liquefaction, gasification v
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Deployable Biomass Conversion

Shrink this

Advantages:
Reduced capital costs
Incremental costs of adding capacity
Reduced transportation costs and energy
consumption due to decreased liquid volumes to be
shipped (compared to large solids volumes)

Appropriate for remote rural areas : . .
Challenges: Mobile biofuels

« Compact technologies (rapid reactions) production
* Product stability and carbon utilization latf
. Solids handling & feedstock flexibility platform




Distributed Pre-treatment Concept:
Reduced Operations and Capital Costs

Current Practice | Cariales enzyme plant

|
size .
) re-treatment - saccharification
_‘ reductlon
residue l
_ iatillati i neutralization &
fuel-grade distillation & fermentation
ethanol drying clean-up

distillation &
drying

clean-up fermentation




Why Hydrothermal?
Techno-Economic Considerations

» Previous economic analysis suggests that pyrolysis ($2/gge) is more
economical than either biochemical ($5/gge) or hydrothermal liquefaction
(HTL) ($4/gge)

Data from Wright et al., 2010 and Zhu et al. 2014

» Pyrolysis requires drying step and is limited by bio-oil product quality and
stability

» HTL offers flexibility

0O Liguefaction to produce a bio-oil with superior properties compared to
pyrolysis

O Pre-treatment to maximize sugar
yield for APP or fermentation “Oil

Window”
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Primary Technical Challenge:

Controlling chemistry during HTL
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Technigues to Control Reactivity

1) Reaction Engineering
Heat rate
Residence time control
2) Catalyst Engineering
Making active catalysts stable
Making stable materials active



Hydrothermal Batch Reactor

Reactor

500 mL 316-ss Parr reactor

rated to 2000 psi at 350 °C
experiments performed at 300 °C
reaction time = 10 min after heat up
agitation rate = 500 rpm

¥ A

Feed
o Size selected pine sawdust
{r-.-f £ 10 wt% slurry
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Organic Carbon Yield and Heat Rate

e |Initially performed to investigate
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Heat Transfer Rate in Continuous Flow

e |n collaboration with MIT in a
separate study, the WPI team has
been studying rapid heating in a
mixing tee reactor

e Biomass fed cold from the top port

e Water superheated (>350 C) to
achieve rapid heat rate
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(Rhagavan et al. J. Supercritical Fluids, 2014)
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Temperature TOS Performance

Cellulose feed
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Controlling Reactivity - Catalysis

» Catalyst allows temperature to be decreased, improving
selectivity

» Catalyst must be — active, selective, and stable

Small subset of
candidate materials

» Additional requirements placed on the material for COST
& SUSTAINABILITY



We address stability and activity 2 ways

» Hydrothermal char as a renewable catalyst material
0 The material itself is stable
0 Need — impart activity

» Organic-modified zeolites as a hydrothermally stable catalyst with
well-defined pore structures

Q The material is active and selective
0 Need — impart stability



Char Materials as Catalysts

v' Renewable source (sugars,
cellulose, hydrolyzates,
biomass)

v" Inherently stable in high-
temperature water

v Can be functionalized
(-OH, -SO,, N)

X Low intrinsic catalytic activity

X Require harsh conditions to
become catalytic
(concentrated acid treatment)

Here, | will focus specifically on hydrothermal chars
formed by carbonaceous feedstocks in a water-rich
environment
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Ball-milling to activate hydrochars for
catalyst applications

Ball-Milling
v' Energy imparted by ball
Impacts

v' Solvent-free

v" No need for downstream
processing

X Mechanism not
understood

We performed fundamental studies to improve our
understanding of chemical processes that occur during
ball milling 17



Raman Spectroscopy to Analyze Chars
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protocol

Tompsett et al., Carbon, submitted



Raman Shows Substantial Structural
Changes during Ball Milling
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Char Reactions and Radical
Intermediates

This mechanism explains loss of bridgehead carbons,

disappearance of small aromatic clusters, and formation of larger
aromatic clusters

Suggests formation of radical intermediates — ESR!
20



Normalized Integrated Intensity (A.U.)

ESR Measures Radical Content
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As predicted, radical signal rapidly increases and then decreases
with larger milling times



Conceptual Kinetic Model

A k_l) B Radical formation

ko, Radical
B —>C recombination

Radical reaction

k3
B=D it air

(9) sa10ads |edipey

All rate constants on
the order of 1x102
and 1x103 min1

Vibrational Species (A, C)

0 100 200 300

Reaction Time (min)

Provides basis for
reaction design
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Organic-Modified Zeolites

Microporous material (<10 A) with alumina substitution, zeolites are strong
Bragnsted acids
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The more alumina, the more active — but the less water stable!

Solution proposed by Resasco et al. — kinetic stability using organic modifiers
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Organic-modified ZSM-5

Common industrial zeolite with
4.46 A pores and 6.36 A cavities

Stable with high Al,O4 substitution
(~40:1 SiO,/Al,O4 ratio is

commercial)
Use silanation chemistry to coat with
hydrophobic molecules
Cl Cl
CI—S|i—CI | _cl
) ETS HsC \/\/\/ Si :
Cl

H,C
|
e H, OTS

HTS

2A



Contact Angle — confirms
hydrophobic surface

Uncoated ETS modified HTS modified 0TS modified
[Unable to capture . .
Modified |Unable to capture 80 100
_ photo because
Using . .| photo because droplet
droplet absorbed into .
Calcine ollet absorbed into pellet
Zeclite . P instantaneously]
instantaneously]
Madified
Using
o

25



Phase behavior — confirms
hydrophobic solution behavior

Uncoated ETScoated HTScoated OTS coated

Toluene

Water

hydrophilic E ) hydrophobic
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FTIR Confirms Presence of Alkyl Groups

Absorbance
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TGA Confirms Thermal Stability

Sample Weight Fraction
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Percent absorbed per total pore volume

Sorption Experiments
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Equilibrium Uptake

% adsorbed (vol/vol)
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Cyclohexanol uptake
Increases with coating
thickness

Hexanol shows a more
modest effect — need to
investigate C, coating in
more detail

Possible explanation, uptake
into zeolite pores and into
organic coating

uptake into
coating

uptake into
pores

Relative contributions depend on

adsorbate sizes and polarities 30



Valorization of Renewable Resources

High Temperature Water Processes fg

Organic-

Rapid reaction rates (small reactors) modified

No feedstock drying zeolites

Feedstock flexibility (including residues)
Low oxygen content liquid product with high stability
Flexibility — pre-treatment, liquefaction, gasification
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