Assessing the impacts of Pan American bioenergy development on birds and insect pollinators

Jessie Knowlton, Research Scientist David Flaspohler, Professor Colin Phifer, Ph.D. Student School of Forest Resources & Environmental Science Michigan Technological University, Houghton, MI

Research Question:

How will Pan American bioenergy development impact socioecological systems, and associated ecosystem services, and how can those impacts best be measured, modeled, and mitigated?

- Identify broad patterns of ecosystem response to land use change associated with bioenergy production systems
- 2) Identify how local conditions (e.g. climate, soils) affect ecosystem responses to bioenergy production
- Assess tradeoffs between ecosystem services provisioned by alternative land use systems

- 1) Identify broad patterns of ecosystem response to land use change associated with bioenergy production systems
- Identify how local conditions (e.g. climate, soils) affect ecosystem responses to bioenergy production
- 3) Assess tradeoffs between ecosystem services provisioned by alternative land use systems

- 1) Identify broad patterns of ecosystem response to land use change associated with bioenergy production systems
- 2) Identify how local conditions (e.g. climate, soils) affect ecosystem responses to bioenergy production
- Assess tradeoffs between ecosystem services provisioned by alternative land use systems

Quantify how bioenergy production alters:

Experimental Design

Argentina: Large plantations

Citrus plantation

Eucalyptus plantation

Grazing

Argentina: Mixed Use

Argentina: El Palmar National Park (Reference)

Villahermosa, Tabasco

Mexico Case Study: Oil Palm in Tabasco

Brazil

- Vegetation type, land use and deforestation
- Availability of areas according to agroecological zoning
- Land ownership structure

Brazil Case Study: Oil Palm in Para

Quantify how bioenergy production alters:

Biodiversity: Birds and Insects

- Cost and time effective
- Sensitive to habitat change
- Indicator species
- Widely studied
- Important ecosystem service providers

Biodiversity Research Objective

Examine the impacts of both **local** and **landscape** scale factors in production systems on **birds** and **insects** and the **ecosystem services** they provide

Argentina: Local scale

Landscape Scale

What is the role of landscape composition and configuration in:1. Maintaining regional biodiversity?2. Providing ecological services to adjoining cultivated lands?

How can bioenergy systems & adjoining land support both commodity production and ecological services?

Pollination

Pest control

Ecological Function?

Production?

Biodiversity Research Objective

Examine the impacts of both **local** and **landscape** scale factors in production systems on **birds** and **insects** and the **ecosystem services** they provide

In each country and land-use type:

- 1) Which species are present?
- 2) How do species use modified landscapes?
- 3) What ecosystem services are provided?

Biodiversity Design

- Replicated 5 km² landscapes, each consisting of >80% of one of the following:
 - 1) Plantation
 - 2) Cattle pasture (most likely alternative)
 - 3) Mixed cropland/small plantation
 - 4) Natural vegetation

Three replicates each, for a total of 12 study landscapes/country

Which species are present?

Graphic: USGS PWRC

Which species are present?

- Bee bowl sampling
- Blue vane traps
- Active netting
- Canopy traps

Nuttman et al. 2011

Expected Results

- Species richness
- Density and/or Abundances of individuals
- Functional group diversity
- Rare and threatened species presence
- Habitat specialists vs. generalists

How do species use these modified landscapes?

Gilles et al. 2011

Hagen et al 2011.

Expected Results

- Home range habitat composition and sizes
- Measure of habitat use and preference
- Barriers to movement

Wu et al. 2014

What ecosystem services are provided?

- Experimental approachs (local level)
 - Adjacent crop pollen limitation
 - Bird pest removal(exclosures)

Expected Results

- Are the other crops in the landscape pollination limited?
- Do birds provide a pest removal service to crops in the landscape?

What ecosystem services are provided?

- Modeling approach (landscape level): InVEST
 - How changes in ecosystems are likely to lead to changes in benefits that flow to people
- Inputs:
 - Habitat quality and quantity
 - Pollinator model
 - Species and abundances of pollinators
 - Flight ranges

integrated valuation of environmental services and tradeoffs

The Natural Capital Project, Stanford

Expected Results

- Under future land use change scenarios:
 - Levels of biodiversity protection
 - Ecosystem services
- Integrate with the carbon and water ecosystem
 PIRE subteams and the socio-economic and policy teams

Integration

Contact Information:

- Biodiversity:
 - Jessie Knowlton (MTU) jlknowlt@mtu.edu
 - David Flaspohler (MTU) <u>djflaspo@mtu.edu</u>
 - Colin Phifer (MTU) <u>ccphifer@mtu.edu</u>

