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Carbon impacts of direct land use change in semiarid
woodlands converted to biofuel plantations in India

and Brazil

ROB BAILIS and HEATHER McCARTHY
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Abstract

We present an analysis of direct land use change (dLUC) resulting from the conve
semiarid woodlands in Brazil and India to Jatropli curcas, a perennial biofuel o
sites examined include prosopis woodlands, managed for woodfuel productio
periodic coppicing. in southern India, and unmanaged caatings woodlands
Brazilian state of Minas Gerais. The jatropha plantations under consideration
pruned and unpruned stands and ranged from 2 to 4 years of age. Stocks of o
aboveground (AG) pools, incuding woody biomass, coarse debris, leaf lit
herbaceous matter, as well as soil organic carbon (SOC) were evaluated. The |
plantations store 5-10 tons of carbon per hectare (1 Cha "} in AG biomass and litt
managed with regular pruning in both India and Brazil. Unpruned trees, only &
in Brazil, store less biomass {and carbon), accumulating just 3tCha ' in AG po

two woodlands that were replaced with jatropha show substantial

ifferences ir

pools: prosopis contains ~11tCha " in AG stocks of carbon, which was very clo
jatropha stand which replaced it. In contrast, caatinga stores ~35tCha 'in AG 1
Moreover, no change in SOC was detected in land that was converted from Pro
jatropha. As a result, there is no detectable change in AG carbon stocks at the
South India where jatropha replaced prosopis woodlands. In contrast, large lossq

carbon were detected in Cent

| Brazil where jatropha replaced native caating,

lands, These losses represent a carbon debt that would take 10-20 years to repa

Keyerorils: biofuels, Caatinga woodlards, direct land use change (LUC), greenhouse gas e

Jatraplss curcas, Prosops juliflon

Reocived 16 Decerber 2000 and avorpled 15 famuary 2007

Introduction

This paper presents an analysis of direct land use
change (dLUC) resulting from the conversion of wood-
lands 1o bofuel plantations at semiarid sites in both
India and Brazil. Each country is currently pursuing
biofuel policies that call for rapid expansion of oilseed-
based biofuel production in the near future. For exam-
ple, Brazilian policy calls for a 40% blend of biodiesel by
2005 (Government of Brazil, 2006) and India’s biofuel
mandate calls for a 20% blend of biodiesel by 2017
(Government of India, 2009, In addition to production
for the demestic market, export-oriented production to
meet demand in other countries may increase future
cultivation. This is particularly true in Brazil, which is
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ABSTRACT: We present a bfe cycle assesment of synthetic paraffinic
is grown in an

kerosene produced rom Jarophi curcas. The feedstock

50 that Jatropha is
with cattle. Additional innovations are introduced induding hybrid seeds,
seedcake, and cogeneration. Two fuel pathways are
camined including a newly developed catalytic decarboxylation process.
Sensitivities ane cxamined incloding higher planting denssty t the expense of
cattle production as well s 80% lower yiekds. Intercropping with pastare and
detonifying seodeske yield coproducts that are expected 1o relieve prossure on
Brazils forests and indirectly reduce environmental impacts of biofuel
production. Other innovations also reduce impacts. Results of the haseline
assessment indicate that innovations would reduce impacts relative 1o the
Eossil fusel reference scenario in most categories incuding 62—75% reduction

detaxification of jatropha

in ouse gas cmissions, 64—52% reduction in release of ozone depleting chemicals, 33-32% reduction in smog-forming
poliatants, 6—25% reduction in adidification, and 60-72% redustion in use of poarencwable energy. System expansion, which

explicitly accounts for soided d

resudhs in harger
improve with higher planting density, and persist # yield bs reduced by half,

B INTRODUCTION

Questions about environmental sustainability of biofuels have
been ratsed sepeatedly by acadenmics, civil society groups, and
governments.'* Food security and land use change (LUC) are
toplcs of particular concern. To address these concerns,
policies have been developed that fver cultivation on marginal
land.” Jatrophu curcas (hereafber jatropha) seemsed to be #n ideal
crop for this application” However, early experiences with
jatropha showed that, although it cam nervive i marginal
conditions, it is not likely to be commerdially visble unless
cultivated on mare favorable land® Independent of debates
over biofucks, agricaltural intensificstion, pasticularly cattle
production in the trapics, has been idemtified as 2 way to reduce
negative LUC™" This stady examines the environmental
impacts of 3 bofuel produstion system curreatly beng
implemented in the Central-Westemn Brazilian state of Mato
Grosso do Sul, in which jatropha b intercropped with cattle
pasture. The project has abio mtroduced a number of cther
innewatiens including hybeid weeds, detoxification of jatropha
seedcake (J5C), and cogeneration and is explosing an
altemative refining process. Collectively, these innovations
significantly lower the eavimamental mpacts associaed with
biofuel production relative to the reference scenario of fossil-
based jet fuel.

Biofuels and Aviation, aofucls are wsed primasily in
ground transpent; however, hn\( i substantial interest in
developing bwofoels for aviation.'' The aviation sector is
currently respensible for approvimately 2% of global green:

g ACS Publications & 211 smrican Cremsal soceny

Rendts are robust acrons allocation methodologes,

bouse gas (GHG) emissions.'” However, it &s among the fistest
prowing segments of the transport sector, particularly in
developing coustries. Visious messuses to cul aviation
emissions have been introdisced inchading bicfuele The mest
common pathway used to prodisce jet fuel with biomass. is
through hydro-processed esters and fasty acids (HEFA), which
yield a synthetic paraffinic kerosene (SPK) that closely
resernbles conveational jet foel (CJF) Teut fights were
conducted and several aislines have camied out commercial
flights using blends of HEFAbased SPK'™" Several HEFA
pathways are being explored including “catalytic-treating”
{HEFA-CHT) and “catalytic decarborylation” [HEFA-
COCL"™" The end products ane very simidar, but the processes

coproducts are quite different. As we discuss in more detad
helow, HEFA-CHT requires more hydrogen and mare siw
materials than HEFA-CDC and also produces more copro-
ducts. As a result, the life cycle impacts of the two pathways are
different. but the magnitude and, in some cases, direction of the
difference & sensitive to allocation methodologies.

Several Bfe cycle assessments (LCAs) have boen conducted
of SPK produced via the HEFA-CHT pathway indluding SPK
derived from jatropha.' ™" However, no assessments have yet
been conducted of the HERA-CDC pathway, altheugh a fow
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Jatropha WTW GHGs using generic
Brazilian conditions in 2009 (no LUC)
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Bailis and Baka, 2010
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What about LUC?

400
300 m Total (no LUC)
Q M Forest (moist)
§ ® Shrub-land (dry)
E” 200 ® Grassland (moist)
I Pasture
100
Degraded pasture
= Annual crops
0 .
Med
CJF Energy-based
allocation
7/23/14 Bailis - RCN "LCA"
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Project-based LCA

e Site-specific silvi-pastoral = 7 f\ 2

production =S
e Utilizing existing pasture e /
— 160 Mha of pasture in Brazil A
— 10 Mha is “degraded”

e Multiple innovations

 Generalizable to other
perennial species?

7/23/14 Bailis - RCN "LCA" 6
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Innovations

Silvipastoral production

= Co-produce oilseeds and cattle

Detoxify press-cake and use animal feed
Use hybrid seeds

Oil extraction with locally produced ethanol
Cogeneration using husks and shells

Alternative refining pathway



Goal and Scope

Compare environmental impacts of conventional jet fuel to
Jatropha-SPK* produced in a novel silvi-pastoral system

e System boundaries

Farm + Oil Extraction + Refining
e Functional unit

— 1 GJ of fuel
e Treatment of co-products

— Mass, energy, and economic allocation

— System expansion

* SPK - synthetic paraffinic kerosene



Innovations

1. Co-produce oilseeds and cattle

2. Detoxify press-cake and use animal feed



1. Co-production with cattle

e Stocking 2 AU* per ha
* Inputs nourish pasture and Jatropha

* AU = Animal Unit - 450 kg live weight

7/23/14 Bailis - RCN "LCA" 10



1. Co-production with cattle

 Annual productivity per ha:
— Jatropha  1.95 tons dry seed plus co-products
— Pasture 10-17 t/ha
— Cattle 2 UA (900 kg)

* UA = Unidade Animal = 450 kg live weight

7/23/14 Bailis - RCN "LCA" 11



1. Co-production with cattle

e Cattle produced here displace cattle
produced elsewhere

...where and by how much? - .

* UA = Unidade Animal = 450 kg live weight

7/23/14 Bailis - RCN "LCA" 12



1. Co-production with cattle

 Co-produced cattle might displace:
— Cattle in managed, natural, or degraded pasture
— Cattle grazing in recently deforested land

Land use in Mato Grosso do Sul (2006)

M Lavouras
M Pastagens Naturais

M Pastagens

B Pastagens plantadas

i Matas e/ou florestas
degradadas

M Sistemas agroflorestais
i Pastagens plantadas

em boas

W Other condicbes

7/23/14 Bailis - RCN "LCA" IBGE, Censo Agropecuario (2006)



1. Co-production with cattle

Emissions from 1 AU:

— Enteric fermentation: 56 kg CH, per year
— Manure: 1 kg CH, and 1.2 kg N,O per year
— Inputs: NPK, diesel...

— Land cover change:

e Degraded — small increase in C
 Managed pasture —no change C

e Forest —large C emissions avoided
Stocking rate in forest regions 0.9 AU/ha
Carbon stocks ~ 150 t-C/ha (IPCC)



1. Co-production with cattle

ence

Including Carbon Emissions from Deforestation in the Carbon

e V6% of Brazil’s cattle were  mommmie i e
produced on recently cut
forest in LAR

e 44 kg CO2e/kg cattle
averaged over all regions

e 352 kgCO,e per FU

Cederberg et al (2011): ROIAETAL

7/23/14 Bailis - RCN "LCA" 15



2. Press-cake detox

* Press-cake detoxification

— 1 dry ton of seed yields 250kg of Jatropha
seedcake (JSC)

* 60% protein
— Assume product displaces soymeal
e 19% domestic animal feed market in Brazil (USDA)

e Corn has bigger market share
* maybe more realistic to displace maize?



2. Press-cake detox

* Press-cake detoxification

— Substitution on a protein basis
e 1 kg Jatropha presscake = 1.3 kg soymeal

— 0.7 kg CO,e/kg soymeal (Ecolnvent, 2010)
— 16-18 kgCO,e per FU via soymeal displacement



3. Hybrid seeds

e Yield
— Originally expected 3.5 kg/tree

— Revised down to 2.4 kg/tree
e Tested sensitivity @ 1.2 kg/tree

e Spacing

— 8x1 with large alleys for pasture

= Improved yields

— Considered monoculture @ 4x1 - vigerand uniormiy

= Reduced input costs

= Enhanced logistics & processing

7/23/14 Bailis - RCN "LCA" 18



MJ per kg

4. Ethanol as solvent

 Replace hexane or pentane
— Saves energy and reduces emissions

Non-renewable energy GHG emissions
30 1.20

=
o
=t

60

o
[
S

o
o)
o

30

0.00

Ethanol from Hexane Pentane  Ethanol from
Ethanol from Hexane Pentane Ethanol from

sugar cane ethylene
sugar cane ethylene
I Other B Waste Disposal m Feedstock production

kg CO2e per kg
o
>
o

o
N
o

B Chemical inputs m Transport M Energy

< Total
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5. Cogeneration

 Cogen using seedcake and husks

Compared with combustien of fossil fuels,
~ CO2s reduced.

Flue gas Chimney

cleaning

Heat exchanger

The hot combustion
sas haat the
edwatar and this

1FU yields Saar 1o |
~ 100 kg husk and shell

Candensation Generator
steam turbine :

=" Residual heat

“I]
L]

Storage for biomass

94 kWh electricity (e.g wood chips) e
pressure

boiler

Hea

. t
— 11 kWh used internally can b0 used s diiric

— 83 kWh exported to grid

7/23/14 Bailis - RCN "LCA" 20



6. Alternative refining pathways

Catalytic hydro-treatment (UOP) Catalytic decarboxylation (Aliphalet)
CJO feedstock
_ Selective Product
Deoxygenation Hydrogenation  Separation
: T b, el g (NI o

CJO

“Green” diesel
Water Recycle

SPK and Petrol

From http://www.uop.com/green-jet-fuel/ From http://www.syngest.com/Aliphalet/images/img flow graphic.jpg

7/23/14 Bailis - RCN "LCA" 21
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Results (system expansion not shown)
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Results

 Reduced impacts in most indicators

 Improvements are robust across allocation
methodologies

 Improvements persist if yields are 50% lower
than expected



Remaining questions

e Carbon dynamics:
— trees, pasture, and soil?
e Reality check on results:
— Soy and cattle displacement

 The project failed and SG
pulled out of Brazil...why?

L ' e Aeronave da GOL é abastecida no Rio
r e - o com t_:ibquerosgne; no d-etalhe,-fruto da
* What are future prospects a & macaiba o cane-de-aica usados na

producao de biocombustivel

Una aeronave de gol es abastecida en rio de

for silvipastoral-based o il b
production of oilseed
“A Gol aircraft is fueled with bio-kerosene in Rio; in particular,

produccion de biocombustible
feedStOCkS? macatiba fruit and cane sugar, used to produce biofuel.”
From p. 141 of this month’s GOL in-flight magazine

7/23/14 Bailis - RCN "LCA" 24




Thanks! Obrigado! Gracias!

e 7, AIRBUS for funding the Jatropha research

Collaboration with Goksin Kavlak (Yale), SG Biofuels, JetBio and Rio
Pardo Bioenergia



Land use change

e Little impact shifting from managed/degraded
pasture to Jatropha:

1 t-C per ha lost from managed pasture
~11.6 kg CO2e/GlJ lost over 20 years

3 t-C gained in degraded pasture
~5.0 kg CO2e/GJ gained over 20 years



GHG reduction requirements in a sample of existing sustainability initiatives

Initiative

Allocation

GHG Reduction requirement

ILUC

Time frame

US-RFS

Displacement
method

Conventional biofuels: 20% lifecycle GHG threshold (below
gasoline) Advanced biofuels: 50% lifecycle GHG threshold
Biomass-based diesel: 50% lifecycle GHG threshold Cellulosic
biofuel: 60% lifecycle GHG threshold

Yes

100 year with
2% discount
rate OR 30 year
with 0%
discount rate

CA-LCFS

GREET
methodology

10% reduction in GHG emissions across fleet

30 year project
horizon

UK RTFO

Substitution
approach
preferred but
economic also
permitted

Targets to overall level of GHG saving achieved by the biofuel
supplied in each obligation period: 2008-2009, 40%, 2009—
2010, 45%, 2010-2011, 50%, etc. The level of GHG saving is an
overall target for all fuels and feedstock reported by a fuel
supplier Will follow the EC-RED Directive

No dLUC with a
carbon payback
time over 10
years

Dutch
NTA 8080

Based on
energy content

For heat and power: at least 70% if reference case is Dutch
mixture of electricity or coal, or at least 50% if reference case is
natural gas.

For transportation fuels: at least 50%; for flows of biomass for
which in the EC-RED “‘a typical GHG emission saving of less than
50% is included as transition period till 2012, a minimum of 35%

Annualized
emissions based
on 20 years

Based on
energy content

At least 35% GHG emission reduction compared to reference
fuel Rising to 50% on January 2017 and 60% in 2018 for biofuels
and bioliquids produced in installations in which production
started on or after January 2017.

Annualized
emissions with
20 yrs
timeframe

Guidelines
under
development

Biofuel shall have lower GHG emissions than the fossil fuel
baseline and shall contribute to the minimization of overall GHG
emissions. The threshold (10,40 and 70% reductions are under
discussion) will be set at the conclusion of the test period

Based on IPCC
methodology




Scenarios

Scenario_______Description

Fossil fuel reference  Average US kerosene-based jet fuel

Baseline Jatropha SPK Jatropha in Brazilian conditions with no

innovations
CJO co-production Energy Allocation
with cattle Mass Allocation

Economic Allocation

No accounting for cattle

Accounting for cattle but no avoided LUC
Accounting for cattle and avoided LUC

7/23/14 Bailis - RCN "LCA" 28



LCA methodologies

e QOur approach:
— Collect primary data

— Follow accepted LCA protocols
e Allocate with system expansion when possible

— Use LCA software common to industry and academia
— Undergo extensive peer review



Milling Products

CcJO

Cake (or meal)

TOTAL (fruit)

Allocation

mass % |energy (MJ
/kg)

Mass (kg per
ton of dry
seed)

390
380
360
250
1380

28%
28%
26%
18%

19
19
39.6
18.3
24

energy
%

22%
22%
43%
14%

100
100
1681
700
621

e
5%
4%
71%
20%

7/23/14
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Taxa de lotagcao de animais

Grafico 21 - Evolucao da taxa de lotacao animal (bovinos)
em relacao a area total de pastagens - Brasil - 1940/2006
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0,2

0,0
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1970

Fonte: IBGE, Censo Agropecuario 1940/2006.
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Allocation factors

Table S1: Factors used to allocate impacts among co-products by energy, mass or economic value (8x1 spacing) °

Mass Energy Economic value
Units produced Economic
per ton of dry Calorific value value
1. Crop production seed % (MJ/unit) % (RS/unit) b %
Jatropha fruit (inc. husk) 1380 kg 88% 12.2 96% 0.39 64%
Cattle (carcass wt) 111 kg 12% 7.8 4% 2.66 36%
2. Oil Extraction °
clo 360 kg 59% 39.6 67% 1.70 71%
JSC 250 kg 41% 18.3 22% 0.55 20%
Electricity to grid 640 kWh NA 3.6 11% 0.12 9%
3 a. Oil refining: HEFA-CHT®
J-SPK 174 kg 56% 44.3 58% 10 53%
Other hydrocarbons 133 kg 43% 42.0 42% 18 47%
3 b. Oil refining: HEFA-CDC'
J-SPK 238 80% 44.3 86% 10 97%
Other hydrocarbons 58 20% 28.7 14% 2.1 3%




Atmospheric CO,, agro-chemicals, diesel fuel,
electricity, water, farm machinery

Ethanol, diesel fuel, water,
building infrastructure, and
machinery

Hydrogen, natural gas, water,
electricity, building
infrastructure, and machinery
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Reference scenario

e Fossil jet fuel

Figure 7-11. GHG Emissions for Liquid Fuels Produced Domestically
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Sensitivity to spacing and yield

Table 2. Differences in Impacts between 8 X 1 Intercropping and 4 X 1 Monoculture”

allocation methodology

no allocation

system expansion

economic energy mass

impact categoryb CHT CDC CHT CDC CHT CDC CHT CDC CHT CDC
GHG —24% —34% —33% —45% —30% —42% —41% —51% 82% 78%
ODP 8% 5% —19% —149% —15% —12% —23% —18% —12% —38%
PCO 6% 6% —19% —20% —17% —18% —22% —23% —8% —7%
ACID 8% 9% —14% —16% —13% —14% —17% —18% —161% —192%
EUT 12% 12% —16% —16% —14% —14% —19% —19% —19% —14%
NRE 5% 7% —13% —17% —11% —15% —17% —21% —22% —51%

“Negative entries (shaded) indicate the 4 X 1 monoculture

defined in Figure 2.

system performs better than the 8 X 1 intercropping system. blmpact categories are

Table 3. Relative Increase in Each Category of Impacts Resulting if Yield Is 50% Lower than Expected with Inputs Held
Constant in the 8 X 1 Intercropping Scenario

econ energy mass no alloc syst exp
impact® CHT CDC CHT CDC CHT CDC CHT CDC CHT CDC
GHG 15% 21% 35% 48% 31% 42% 47% 59% 9% 9%
oDP 30% 21% 63% 46% 59% 40% 75% 59% 37% 122%
PCO 27% 28% 59% 60% 54% 54% 68% 69% 23% 21%
ACID 22% 25% S51% 56% 45% 51% 59% 63% 554% 659%
EUT 31% 32% 65% 66% 59% 61% 73% 74% 75% 56%
NRE 19% 27% 43% 57% 37% 50% 57% 70% 71% 168%

“Impact categories are defined in Figure 2.
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Results — system expansion
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