Increasing Refinery Product Slate Flexibility by Revamping the Cat Feed Hydrotreater (CFHT)

Advances in Mild Hydrocracking Technology

Venkata Josyula Axens North America, Inc.

US Distillate Market Analysis

- 5% annual increase
- Result of various diesel projects

Trend Projected to Continue

US Distillate Export Market

World On-Road Diesel Forecast

Southwest Process Technology Conference

World On-Road Diesel Market

US Diesel v Gasoline Price

Product Slate Flexibility is Key for Profitability

- \$20/bbl seasonal swings
- Median spread favors diesel \$2.25
- >60% of the year, incentive to swing to diesel

Options for Increasing Diesel

CFHT Revamp Considerations

Engineering Evaluation

Catalytic System

FCC Impact

Maximize Distillates

- Switch to hydrocracking catalyst load
- Conversion 15-35% achievable in most existing reaction systems
- Excellent selectivity towards diesel

Pool

Benefits

Catalyst Solutions

Catalyst Diesel Selectivity

Axens Catalysts Developed for the Diesel Market

- R&D Geared toward European Diesel Demands
- Excellent Diesel Selectivity

- Commercial results demonstrate 10:1 Diesel to Naphtha yields
- Variety of Feedstocks (SR, CGO, DAO, LCO)
- In-line with goal of maximizing **Diesel** in the US Market

Revamp Considerations

Catalytic System

Engineering Evaluation

Pool Benefits

Feed Quality & FCC Yields

- Increased FCC feed quality (aromatics saturation)
- Increased selectivity towards gasoline and LPG
- Decrease in LCO and Slurry
- Increased product quality (lower S, N)

FCC and Alkylation Impact

FCC Pretreating – H₂ Content

Hydrogen Addition Improves FCC Performance

Revamp Considerations

Catalytic System

Engineering Evaluation

Areas of Focus

- Reactor ΔP
- Reactor Internals
- Heater Limitations
- Compressors
- Stripper top Section
- Fractionation
- SAFETY SYSTEMS

Revamp Considerations

Catalytic System

Engineering Evaluation

Improvements

- Shift D/G Ratio
- Increase overall liquid yields (volume swell)
- Reduced FCC gasoline posttreating requirements

Case Study

Axens Case Study Results

Southwest Process Technology Conference

Axens Case Study

- **Existing operation**
- FCC Feed S Target of 2,000 ppm
- 36 month cycle in the CFHT
- Revamp CFHT to Mild Hydrocracker
- Maximize Distillates
- MHC Diesel treated in existing DHT unit
 - Mild Hydrocracker Revamp is complete
 - Minimize conversion & adjust cut-points
 - Maximize FCC gasoline production
- Mild Hydrocracker Revamp is complete
- Integrate new polishing reactor
- Produce ULSD directly from the MHC

Constant Gasoline Pool RON for All Cases

Case Study Configuration

Revamp – Base Case

	Conversion	FCC Feed IBP	FCC Gasoline Yield
Base Case	10%	480 °F +	Base

Southwest Process Technology Conference

Revamp – Max Diesel

	Conversion	FCC Feed IBP	FCC Gasoline Yield
Base Case	10%	480 °F +	Base
Max Diesel	27%	650 °F +	+5.4 v%

Southwest Process Technology Conference

Revamp – Max Gasoline

	Conversion	FCC Feed IBP	FCC Gasoline Yield
Base Case	10%	480 °F +	Base
Max Diesel	27%	650 °F +	+5.4 v%
Max Gas	13%	480 °F +	+1.6 v%

Southwest Process Technology Conference

Case Study Results

	Base Case	MHC Case Max Diesel	MHC Case Max Gas
CFHT/MHC			
Conversion (650 +)	10	27	13
H2 Consumption, SCFB	Base	+ 300	+ 50
Diesel Recovery, BPSD	Base	+13,050	+400

Southwest Process Technology Conference

Case Study Results

	Base Case	MHC Case Max Diesel	MHC Case Max Gas
CFHT/MHC			
Conversion (650 +)	10	27	13
H2 Consumption, SCFB	Base	+ 300	+ 50
Diesel Recovery, BPSD	Base	+13,050	+400
FCC, PG+ and Alky			
FCC Feed Rate, %	Base	-30%	Base
FCC Feed H2, wt%	Base	+0.5	+0.1
FCC Gasoline yield, wt%	Base	+5.4%	+1.6%
Gasoline Production, BPSD	Base	-8,400	+ 570
ULSD Production, BPSD	Base	+9,650	-320
Total Trans. Fuels Pool, BPSD	Base	+1,250	+250
Refinery Fuel Yield, v%	92.9	93.9	93.1

Southwest Process Technology Conference

Mild Conversion – ULSD Challenge

Mild Conversion achievable in existing units

- Shift the D:G Ratio
- Increase overall liquid yield

Flexibility achievable after revamp

- Return to Base Case D:G Ratio
- Extend reactor cycle

ULSD is not possible under mild conversion conditions

DHT capacity increase is required

Polishing Reactor

Axens HyC-10 Process

Axens HyC-10 Process

30% CAPEX Savings vs. New Unit

Polishing Reactor Operating Conditions

- Improved H₂pp due to pure make-up
- Lower reactor size due to less vapor flow and reduced H₂Spp

Major Equipment Savings vs. New DHT Unit:

• 2 compressors, 1 air cooler, HP amine absorber

Unit Integration

- Optimized H2 Usage
- Possibility for heat integration between two sections
- Maximize cycle length

Commercial Revamp 1 Southern European Refiner

Axens Licensed Unit

- Capacity: 37,600 BPSD
- Start-up: 2005
- Catalyst loading: 100% Hydrotreating

2010 Revamp Objectives:

- Net conversion increase
- Maximize Euro V Diesel
- Maintain feed rate
- Maintain cycle length

- Process Study to identify bottlenecks
 - Add EquiFlow® Internals and new catalyst combination: HDT + Cracking Catalysts

Commercial Revamp 1

Southern European Refiner

- Revamp completed: start-up May 2013
- Feedstocks:
 - SRVGO+ Aromatic Lube Extract
 - Polishing reactor treats:
 - MHC DSL + LCO + SRAGO + VB Naphtha

Successful Revamp	Original Design	After Revamp
VGO Net Conversion, wt%	Base	+17%
Catalyst Cycle Length, months	31	On-going
MHC Euro-V Diesel Flowrate, BPSD	Base	+ 60%

Commercial Revamp 2 Eastern European Refiner

- **2014 Revamp Objectives**
- Increase net conversion : Maximum Diesel Production
- Maintain Product Quality
- Maintain Cycle Length

Axens

Solution

Minimize shutdown time

New catalyst combination:

HR 544+ HYK 732 CoMoNi Zeolite

Commercial Revamp 2 Eastern European Refiner

Revamp Economics

2014 Fuels Pricing. Source: EIA. www.eia.gov

Revamp Economics

CAPEX

- New or Modified Fractionator
- Make-Up Compressor Mods
 - Capacity increase
 - Increase stroke? New machine?
- Reactor Internals

OPEX

 Limited utility consumption increase (< 8%)

50,000 BPSD CFHT Unit

Flexible Mode MHC

- CAPEX: \$MM 30
- Increased Revenue: \$MM 45/yr
- Simple Payout:
 < 10 months

Increased H₂ Consumption

Flexibility Profitability

Conclusion

Revamp CFHT to Mild Hydrocracker

- Increase diesel production
- Flexible operation for high gasoline margin periods
- Extremely selective catalyst
- Fast-track schedule

FAST SCHEDULE FAST PAYBACK

HyC-10 Option

• Maintain ULSD production for refiners short on DHT capacity

Reduced CAPEX

