European Congress of Chemical Engineering, Nice, September 2015

BREATHING LOSSES FROM LOW-PRESSURE STORAGE TANKS DUE TO ATMOSPHERIC WEATHER CHANGE

Dr. Davide Moncalvo, Dr. Michael Davies, PROTEGO, Germany

Agenda

Introduction

- State of the art
- Description of available models and experiments
- Conclusions
- Future work

Introduction

- **Low-pressure tanks are large open-air storage** tanks, containing huge amounts of product within thin walls
- **Protection against corrosion and thermal losses** caused by weather changes incl. storms is often done by organic *coating*
- A more economical corrosion protection may be *painting* the tank. However, a painted tank lacks of the thermal protection against weather temperature changes or seasonal rainfalls or droughts
- For a tank protected against vacuum and overpressure ambient heat inflow leads to breathing out of valuable product, whereas sudden cooling leads to vacuum, compendsated by in-breathing of ambient air.

State of the art

EXECUTE: Literature sources on this topic

"*Naumann formulas*" (unpublished)

□ *"Höchst paper*" written by Sigel, Kuxdorf, Meiss and Schwarz in Chem. Ing. Tech. 55 (1983) **T**, *PTB Paper* alias PTB Bericht W-22 written by Förster, Schampel and Stehen (1984)

□ Salatino, Volpicelli and Volpe in Trans.IChem 77 (1999)

ISO 28300 (2008) identical to ANSI / API 2000 6th Ed. (2009)

State of the art / Models and experiments

Note: The methods (measurements) presented here have been derived (performed) for cylindrical tanks

Naumann formulas

Naumann formulas are conservative empirical estimations of the tank maximum inand outbreathing to compensate for tank thermal heating and cooling

$$
\dot{V}_{max-out} = 1.1 \frac{m}{h} \cdot H \cdot D \approx 1.292 \frac{m}{h} \cdot \left(\frac{H}{D}\right)^{1/3} \cdot (V_{tank})^{2/3}
$$

$$
\dot{V}_{max-in} = 1.5 \frac{m}{h} \cdot (H + 4D) \cdot D \approx 1.762 \frac{m}{h} \cdot \left[4 \left(\frac{H}{D} \right)^{-2/3} + \left(\frac{H}{D} \right)^{1/3} \right] (V_{tank})^{2/3}
$$

PTB tank heating model

Tank volume increment following a long sun exposure

$$
\dot{V}_B(t) = \frac{V_{tank}}{T_{B0}} \frac{c}{\lambda} \left[exp\left(\frac{\lambda - a}{2}t\right) - exp\left(-\frac{\lambda + a}{2}t\right) \right]
$$

$$
\lambda = \sqrt{a^2 - 4b}
$$

$$
a_{PTB} = A_{tank} \cdot \left(\frac{\alpha_B}{C_B} + \frac{\alpha_B + \alpha_{conv} + 0.75\varepsilon_{emis}\alpha_{emis}}{C_E}\right)
$$

$$
b_{PTB} = A^2_{\ \tan k} \cdot \frac{\alpha_B}{C_B} \cdot \frac{\alpha_{conv} + 0.75 \varepsilon_{emis} \alpha_{emis}}{C_E} \qquad c_{PTB} = A^2_{\ \tan k} \cdot \frac{\alpha_B}{C_B} \cdot \frac{I \cdot \varepsilon_{rad} \cdot \varphi_{GEOM} - 0.5 \cdot E_{BLACK} \varepsilon_{emis}}{C_E}
$$

This formula foresees a maximum tank shrinking V_{max} at some time

$$
\dot{V}_{max} = \dot{V}_B(\tau) \quad \text{with} \quad \tau = \frac{1}{\lambda} \ln \left(\frac{a + \lambda}{a - \lambda} \right) \neq 0
$$

Höchst and PTB tank cooling model

Tank volume reduction following rainfall cooling

Unlimited rain (flood, deluge) Thin rain film thickness (rain)

$$
\dot{V}_B(t) = V_B \cdot \frac{T_{B0} - T_{rain}}{T_{B0}} \frac{b}{\lambda} \left[exp\left(\frac{\lambda - a}{2}t\right) - exp\left(-\frac{\lambda + a}{2}t\right) \right]
$$

$$
\lambda = \sqrt{a^2 - 4b}
$$

$$
a = A_{tank} \cdot \left(\frac{\alpha_B}{c_B} + \frac{\alpha_B + \alpha_w}{c_E}\right) \qquad a = A_{tank} \cdot \left(\frac{\alpha_B}{c_B} + \frac{\alpha_B + \alpha_w(1 - k)}{c_E}\right)
$$

$$
b = A^2_{tank} \cdot \frac{\alpha_B}{c_B} \cdot \frac{\alpha_w}{c_E} \qquad b = A^2_{tank} \cdot \frac{\alpha_B}{c_B} \cdot \frac{\alpha_w(1 - k)}{c_E}
$$

This formula foresees a maximum tank shrinking V_{max} at some time

$$
\dot{V}_{max} = \dot{V}_B(\tau) \quad \text{with} \quad \tau = \frac{1}{\lambda} \ln \left(\frac{a + \lambda}{a - \lambda} \right) \neq 0
$$

 $k = \frac{\alpha_w}{\alpha_w + \dot{m}_{rain} c_{rain}}$

Salatino model

- If considers the different heat transfer intensity between gas and tank shall and the roof in a partially filled wetted tank. Liquid temperature is assumed unchanged.
- His method consists in a thermodynamic analysis of the tank before and after a weather change, f. i. rainfall cooling in a long hot dry summer
- Final gas temperature in function of the final temperature of each surface facing it

$$
T_{end,G} = \sum \frac{A_i \cdot \alpha_{iG} \cdot T_i}{A_i \cdot \alpha_{iG}} = \frac{A_r \cdot \alpha_{rG} \cdot T_r + A_s \cdot \alpha_{SG} \cdot T_s + A_L \cdot \alpha_{LG} \cdot T_L}{A_r \cdot \alpha_{rG} + A_s \cdot \alpha_{SG} + A_L \cdot \alpha_{LG}}
$$

 He proposed a rigorous numerical method and a simplified model to predict the maximum inbreathing load due to rainfall cooling of a warm tank (Difference 2 %)

$$
\dot{V}_{tank} = \frac{R}{p} \cdot (T_{hot,G} - T_{cold,G}) \cdot \frac{A_r \cdot \alpha_{rG} + A_s \cdot \alpha_{sG} + A_L \cdot \alpha_{LG}}{c_p}
$$

ISO 28300 and API 2000 (2009)

- The thermal outbreathing capacity is given by
	- $\dot{V}_{out} = Y \cdot (V_{tank})^{0.9} \cdot R_i$

for safety and environment

• The thermal inbreathing capacity is given by

Latitude				
$V_{in} = C \cdot (V_{tank})^{0.7} \cdot R_i$	Nexane or similar Storage temperature	Higher than hexane, unknown Storage temperature		
Below 42°	4	6.5	6.5	6.5
42° - 58°	3	5	5	5
Above 58°	2.5	4	4	

PROTEGO® Initial test / Test condition and sensors

Test probe diameter 12 mm

Inner Temperature Thermometer Pt100

Outer Temperature Thermocouple

Water poured using two hoses with combined mass flux of 230 kg/m²h

© Braunschweiger Flammenfilter GmbH 11

PROTEGO® Initial test / Temperature profiles and inbreathing velocity

Conclusions about the available data

- Besides ISO 28300 (API 2000), PTB and Höchst models enjoy wide acceptance
- Models have been validated for either gassy or laboratory size tanks
- The tanks are considered as uninsulated and the impact of wall thickness is unaccounted
- Some models predict the maximum inbreathing load occurring as soon as rain falls, while others assume it occurring later on
- Models often rely heavily on simplified assumptions for heat transfer coefficients, see f. i. constant temperature – independent convection coefficients
- Furthermore, most models use convection heat transfer coefficients derived for small diameter piping systems to tanks.
- Inner tank vapor condensation mechanism is usually neglected (Nucleation)

Future work / Targets for future research

- Measurements will be started with small tanks: test tank (4.3 m²) to API 12F (62 m²)
- Measurements with hot air, ethanol, methanol
- Filling levels: 10%, 50%, 75%, 90%
- Natural precipitation or water pouring with hoses
- Modeling product condensation (nucleation models), tank wall thickness and insulation

These are our ideas! We are open for suggestions, critics and inputs

Work in Progress / Roadmap

- **10th European Congress Chemical Engineering, www.ecce.eu** 27. Sept. – 01. Oct. 2015, Nice, France, accepted paper
- **DIERS Fall 2015 Meeting,** 05. – 07. Oct. 2015, Houston, TX, USA
- **Loss Prevention Conference 2016, www.wp-lossprevention.eu** 05. – 08. June 2016, Freiburg, Germany, accepted paper
- **DIERS Spring 2016, thd**

Thank you very much for your kind attention!

Reproduction, in part or in full, subject to prior written approval of Braunschweiger Flammenfilter GmbH. © 2015 All rights included.

孤川