CMTC 2017

Spray Towers Can Perform Better than Packed Towers in Capturing CO2

2017. 7. 19

Minki Cho and Jin W. Lee (jwlee@postech.ac.kr)

Dep't of Mech. Eng., POSTECH

Pohang, KOREA

- 1. chemical absorption using liquid absorbent
	- 1 η ~ exp(- α h_mA_L/Q_g) ~ exp[- α (h_mA'')(Q_L/Q_g)(L/V_f)]
	- factors affecting η ; h_m and A_L[= A'L ~ A"Q_L(L/V_f)]
- 2. common practice
	- increase Q $_{\mathsf{L}}$ L/V $_{\mathsf{f}}$ \rightarrow easy and direct \rightarrow cost more money
	- Q_L (solvent flow) $\bm{\rightarrow}$ energy for flow and regeneration
	- L (tower height) \rightarrow construction for structure and packing
	- V_f (falling speed) \rightarrow construction + maintenance for internal packing
- 3. η enhancement via h_mA" ?
	- A" (specific surface area per liquid volume); film \rightarrow drop
	- efforts to enhance h_m have not been very successful

- 1. h_m ; gas-interface-liquid
	- h_{m} in the gas phase ; fast enough \Rightarrow no/little additional benefit
	- overall h_m dominated by the internal dispersion within the liquid phase
- 2. h_{m} for a single liquid drop or film
	- saturation(ΔΦ) or effectiveness \rightarrow τ_f/τ_d ~ d^{-(2~2.5)}
		- τ_α, time for internal diffusion; τ_f ,contact/falling time
	- smaller drops or thinner films always advantageous ; Φ ~ d^{-(2-2.5)}
	- liquid size difficult to change ; l ~ $\mathsf{V}_{\mathsf{g}}^{\mathsf{1/2}}, \, \mathsf{V}_{\mathsf{t}}$ ~ d_{p} 1–1.5
- 3. mass-averaged <u>h_m</u>
	- every non-uniformity always deteriorates performance
	- highly non-uniform ; drop-size, spatial distribution
	- * reduced non-uniformities \rightarrow enhanced $\underline{\mathsf{h}}_{\mathsf{m}}$
	- \rightarrow even without any change on the single-drop level

Environmental Thermo & Fluid Engineering Lab

Spray Tower against Packed Tower

- 1. strong points
	- surface area (A") **;** large and easy to control
	- diffusion in 3-D \rightarrow shorter diffusion time
	- internal circulation \rightarrow enhanced mixing
	- * theoretical performance \rightarrow much better
	- simple structure and low cost ; no packing
- 2. weak points
	- high falling speed \rightarrow short capture time
	- spatial distribution ; highly non-uniform
	- drop-size non-uniform ; σ_{g} > 2.0
		- \rightarrow residence/reaction time
		- \rightarrow big drops lost to the wall
		- \rightarrow small droplets lost by fly-back
		- * the bigger drops are the more ineffective

- 1. packed tower
	- better capture ; mainly due to the slow fall
	- little room for further improvement ; film thickness ~ f(Q_L, V_g)
	- packing materials, heavy structure
- 2. spray tower
	- larger surface area + 3-directional diffusion + internal circulation
	- poorer capture ; wall loss + fly-back + various high non-uniformities
		- \rightarrow spatial distribution, drop-size, gas velocity (higher porosity)
	- large room for performance improvement
- 3. chance for performance enhancement
	- via reducing the drop-size non-uniformity
	- negligible additional cost

- 1. Non-uniform gas velocity, drop size and droplet spatial distribution
- 2. Poly-disperse drop size distribution ; log-normal

$$
dM(i, j) = m''_g(i, j) \cdot A(i) \cdot [n'''(i) \cdot z \cdot A_C]
$$

$$
dM(j) = \sum_{i=1}^{i} dM(i, j) = \sum_{i=1}^{i} m''_g(i, j) \cdot \left\{ \pi \cdot [d(i)]^2 \right\} \cdot [n'''(i) \cdot z \cdot A_C]
$$

Droplets out Gas in

- reduced size variation (σ $_{\rm g})$ \rightarrow (Q_L/Q_g)L reduced (same η condition)
	- \rightarrow 1/2 with σ_{g} = 1.6 and 1/3 with σ_{g} = 1.2 (relative to σ_{g} = 2.0)
	- \rightarrow system size (L) reduced ; same ratio (same Q_l/Q_g condition)
- enhanced capture for any type of solvent
- enhancement factor ; independent of the system size L and V $_{\textrm{\scriptsize g}}$ (~ 1:10)

- 1. target performance
	- maximum capture per solvent mass
	- every droplet follows the same capture/saturation history
- 2. basic structure
	- uniform vertical injection of mono-disperse droplets
	- spatial distribution of droplets optimized ; radial + axial
- 3. implementation
	- nozzle plate with multiple micro-nozzles
	- optimized nozzle array pattern and nozzle hole size
- 4. other characteristics
	- wall loss and fly-back minimized
	- coagulation minimized ; small relative velocity between drops
	- similar conditions along the axial position \rightarrow scale-up easy

Generation of Mono-disperse Droplets

- 1. single nozzle
	- breakup of liquid column
	- hydrodynamic instability + proper control mechanism
	- f = F(do, V_j, liquid properties)
	- d_p = F'(do, V_j, liquid properties)
	- $-\sigma_g \sim 1.2$
- 2. nozzle plate
	- micro nozzles of variable shape and size
	- optimum arrangement of nozzle holes
	- vertical injection

 $-\sigma_{\rm g} \sim 1.2$

Experimentation of CO2 Capture

- 1. spray tower
	- D = 100mm
	- L = 0.5, 1.0 and1.5m \rightarrow L/D = 5, 10 and 15
- 2. gas mixture
	- 15% CO2 in N2
	- V_g = 2~4 cm/s
	- gas distributor ; uniform, non-uniform
- 3. solvent
	- 8% NH3 and 30% MEA
	- d_{CMD} ~ 300μm, σ_g = 1.2
- 4. nozzle plate
	- variety of designs ; do, thickness, contour
	- support
- 5. temperature ; 25°C

Capture Efficiency

- 1. general shape of the η-curve
	- close to the theoretical or exponential curve up to very high (Q $_{\sf L}/{\sf Q}_{\sf g}$)L ~ 25
	- not flattened at high η conditions, unlike in most existing systems
- 2. very high efficiency of 95% attained at 25(mol/mol)m condition
	- mass transfer coefficient (h_mA) ; twice as high as in other spray towers
	- similar between NH3 and MEA ; 25% smaller Q_L with MEA

Comparison with Numerical Simulation

- numerical results \rightarrow universal efficiency formula (formula not shown here)
- excellent agreement

PO

EnvT ab Frivinnmental Thermo & Fluid Frigineering La

Environmental Thermo & Fluid Engineering La

Effect of Tower Length

- 1. potential adverse secondary effects
	- coagulation + wall loss + crossing
- 2. universal η-curve
	- η= η[(Q $_{\sf L}$ /Q $_{\sf g}$) ${\sf L}_{\sf eff}$] ; ${\sf L}_{\sf eff}$ = ${\sf L}_{\sf O}$ (L/ ${\sf L}_{\sf O}$) $^{\sf a}$
	- experiment ; α = 0.8~0.9
	- simple theory ; α ~ 0.8

- 1. longer tower (L)
	- residence time \sim 1 sec \rightarrow 1/10 \sim 1/5 of other lab-scale towers
	- longer towers provide longer contact time ; h_m ~ (Q_L/Q_g)L_{eff}/V_f
- 2. high gas velocity (V $_{\rm g}$)

- V_f = V_t - V_g

- residence/contact time increased

- 3. drop-size optimized to V_q
	- falling velocity optimized independently of V_{g} \rightarrow additional d.o.f. - V $_{\rm t}$ ~ d $_{\rm P}$ 1~1.5
- 4. optimized nozzle array
	- non-uniform V_{g}
	- gas exit manifold

Prediction for Large-Scale Application

26 $\alpha = 0.8$ 1. demo-scale pilot plant $-D - v = 0.5$ m/s -20 $v = 1.0$ m/s - V $_{\rm g}$ = 0.5~1.5 m/s $v = 1.5$ m/s -α = 0.8 16 _₿ 10 2. sample solution for NH3 1) drop-size optimized to V_g 2) L_{90} ~ 10m with Q $_\mathsf{L}$ /Q $_\mathsf{g}$ = 2 liter/m 3 9 9 \rightarrow much shorter than any others Q / Q 3) L_{90} ~ 20m with $\mathsf{Q}_{\mathsf{L}}/\mathsf{Q}_{\mathsf{g}}$ = 1 liter/m 3 4) very short tower is sufficient for η = 90% at any gas velocity - irrespective of solvent type and gas velocity - further reduction in solvent flow possible in taller towers 5) MEA/DEA ; 25% less absorbent or absorber length

- 1. design flexibility single unit
	- shape of the cross-section flexible
	- (actively) controlled non-uniform size/position distribution possible
	- no viscosity-effect $\bm{\rightarrow}$ multi-step liquid injection not needed
- 2. design flexibility multi units of small cross-section
	- simultaneous multi-functions ; gas, absorbent, conditions
	- multi-step, recycling, variation of gas load, alternate maintenance
- 3. overall facility and operation
	- simple structure \rightarrow low cost for construction and maintenance
- 4. applicable to regenerators
	- lower Q_I \leftarrow (effective mean internal dispersion) \rightarrow lower T_r

- 1. Basic concept of the ideal spray tower developed
	- mono-disperse droplets + vertical injection
	- scale-up easy and straight-forward with little side effect
- 2. Capture performance verified ; lab-scale
	- performance curve close to that of an ideal reactor
	- best-ever performance of 95% observed with NH3
	- performance enhanced irrespective of the type of solvent
- 3. Feasibility of application to full-scale confirmed
	- very short tower is sufficient for η = 90% for any solvent gas velocity ${\sf L}_{90}$ ~ 10m with Q $_{\sf L}/{\sf Q}_{\sf g}$ = 2 liter/m 3 ; ${\sf L}_{90}$ ~ 20m with Q $_{\sf L}/{\sf Q}_{\sf g}$ = 1 liter/m 3
	- applicable to regenerators with similar benefit
	- substantial (< 1/2) cost reduction expected relative to packed towers thru much shorter tower and no packing material

For More Information or Discussion

Jin W. LEE, Ph.D.

Professor Department of Mechanical Engineering

POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY

77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea TEL +82-54-279-2170 FAX, +82-54-279-3199 CP, +82-10-3234-2170 Email: jwlee @postech.ac.kr

