New Amine-Containing Membranes for CO₂ Capture

Kai Chen, Yang Han, Witopo Salim, Zi Tong, Dongzhu Wu and <u>W.S. Winston Ho</u>

William G. Lowrie Department of Chemical & Biomolecular Engineering Department of Materials Science and Engineering The Ohio State University, Columbus, Ohio, USA

The Carbon Management Technology Conference 2017 Houston, TX, July 17 – 20, 2017

Outline

- CO₂ Capture from Flue Gas in Coaland/or Natural Gas-fired Power Plants
- CO₂ Capture from <1% CO₂
 Concentration Sources, e.g.,
 - Residual flue gas after the primary CO₂ capture system
 - Coal-mine gas streams

Introduction

- Coal-fired power plants
 - 40% of global CO₂ emission
 - Remain as major energy supply
- Membranes for CO₂ capture from flue gas
 - System compactness
 - Energy efficiency
 - Operational simplicity
 - Kinetic ability to overcome thermodynamic solubility limitation

Challenges and Goals

• High CO₂ Permeance P

$$P_{co_2} = \frac{J_{co_2}}{p_{co_2,f} - p_{co_2,p}}$$

Reduce Membrane Area

Thin Membrane Thickness Needed

• High CO₂/N₂ Selectivity

 $\alpha_{CO_2/N_2} = \frac{P_{CO_2}}{P_{N_2}}$

Provide High CO₂ Purity

High Selective Membrane Material Needed

>700 GPU CO₂ permeance and >140 CO₂/N₂
selectivity at 57°C
To meet the DOE target < \$40/tonne CO₂ (2007 \$)

Amine Polymer Layer Contains Mobile and Fixed Carriers: Facilitated Transport

Amine-Containing Polymer Membrane Structure

Simplicity of Membrane for Low Cost

Amine layer

Porous PES or PSf

Non-woven fabric

Amine Layer Composition

Fixed-site carrier:

Mobile carrier:

Piperazine glycinate (PG)

High-Molecular-Weight PVAm Synthesis

Polymer	Monomer Conc. (wt.%)	Initiator/Monomer Weight Ratio	3 wt.% Polymer Solution viscosity (cp)	Weight Average MW
PVAm (a)	30	0.5/100	486	719,000
PVAm (b)	40	0.14/100	1,400	1,200,000
Lupamin®	N/A	N/A	50	340,000

- MW measured by Dynamic Light Scattering (DLS)
- Lupamin[®] contains ~66% sodium formate

High-Molecular-Weight PVAm Synthesized

Viscosity:

- 3 wt.% commercial PVAm: 50 cp
- 3 wt.% high MW PVAm: 450 1950 cp

a) High viscosity

- Decrease coating solution concentration
- Allow for preparation of thinner membrane
- Improve adhesion to support less defects

b) Low salt amount

- Improve membrane stability

Composite Membrane Synthesized Selective Amine Polymer Layer on PES Support

Selective layer = 165 nm

Membrane Scale-up: Continuous Rollto-Roll Fabrication Machine at OSU

Tuning Membrane Thickness

$$l \times \rho_{dry} = 0.5 \times c \times \rho_{sol} \times l_{gap}$$

- l: dry membrane thickness (μm)
 ρ_{dry}: density of dry membrane (g/cm³)
 ρ_{sol}: density of coating solution (g/cm³)
 c: total solid concentration of coating solution (by weight)
- l_{gap} : gap setting of coating knife (µm)

Coating Technique Modification: Insert

 A thinner thickness with a higher web speed for a given coating solution supply rate

Thin 14"-Wide Amine Coatings on Substrates

Coating knife assembly configuration	Polymer concentration	Viscosity of Coating Solution	Web speed	Selective amine layer thickness			
Configuration	(wt.%)	(cp)	(ft/min)	(nm)			
	1.8	870	3	175			
			4	135			
Insert with			5	115			
1-INCN TIOW	2.4	940	3.25	210			
channel neight «			3.5	195			
	3	1180	3.5	185			
	1.5	690	1	230			
			2	165			
Insert with			4	135			
2-inch flow	1.8	870	2	220			
channel height ^a			3	155			
	2.4	4.400	1.6	210			
	3.4	1430	2	178			
^a 2.5 mil of flow channel opening							

Membrane Element Fabrication

Element Rolling Machine Spiral-Wound

Spiral-Wound Membrane Element

Membrane Module Feed Inlet

Sweep Inlet

Feed Outlet

Good Membrane Module Stability Obtained

Process Proposed for CO₂ Capture from Flue Gas in Coal-Fired Power Plants

* Air Sweep first used by MTR

• Proposed membrane process does not require cryogenic distillation (compared to competition) Ramasubramanian et al., JMS, 421-422, 299 (2012) 17

SO₂ Polishing & Membrane Process

- Absorption into 20 wt% NaOH Solution
 - Polishing step based on NETL baseline document
 - Estimated to be ~ \$4.3/tonne CO₂ (in 2007 \$, 6.5% COE increase)
 - Non-plugging, low-differential-pressure, spray baffle scrubber
 - High efficiencies (>95%)

Techno-Economic Analysis

- Basis: In 2007 dollar
 - DOE target: \$40/tonne CO₂ set for 2025
 - Include membrane module installation cost
 - Also include 20% process contingency
- Membrane Results at 57°C
 - Amine-containing membrane with >140 selectivity key for stand-alone membrane process
 - Membrane process does not require cryogenic distillation
 - PEO-containing membrane with 2000 GPU CO₂ permeance and 20 selectivity

Composite Membranes Containing Amine Cover Layer: Simulated Flue Gas at 57°C

Process Proposed for CO₂ Capture from <1% CO₂ Sources

 Proposed membrane process does not require cryogenic distillation (compared to competition)

Location of Proposed Technology in Coal-fired Power Plant

Performance Improves as CO₂ Conc. Reduces

High-Level Techno-Economic Calculations

• Basis: Membrane Results at 57°C

- 982 GPU & 211 Selectivity for 1% CO₂ concentration feed gas
- 806 GPU & 173 Selectivity for 20% CO₂ concentration feed gas
- Include Membrane Module Installation Cost and 20% Process Contingency
- In 2011 dollar: NETL Case 12 of Updated Costs (June 2011 Basis) for Selected Bituminous Baseline Cases

Calculated Cost Results

- 32.1 tonne/h of CO₂ captured from 1% CO₂ source
- \$107.8 million bare equipment cost
 Membrane 34%, blowers and vacuum pumps 62%, others 4%
- 1.76 ¢/kWh (1.24 ¢/kWh capital cost, 0.22 ¢/kWh fixed cost, 0.26 ¢/kWh variable cost, and 0.04 ¢/kWh T&S cost)
 COE = 8.09 ¢/kWh for 550 MW supercritical pulverized coal power plant
- \$302/tonne capture cost (\$17.6/MWh × 550 MW/(32.1 tonne/h))
- 21.8% Increase in COE (1.76/8.09 = 21.8%)

Effect of CO₂ Permeance on Techno-economic Analysis Results

Summary

- CO₂ Capture from Flue Gas
 - High-Molecular-Weight PVAm Membrane Synthesized
 - Composite Membranes Synthesized in Lab
 - + ~800 GPU with >200 Selectivity at 57°C
 - Membrane Scaled up Successfully
 - Scale-up Membrane Promising for Meeting DOE Cost Target of \$40/tonne CO₂ (in 2007 dollar) for 2025
- CO₂ Capture from <1% CO₂ Conc. Sources
 - Membrane showed 982 GPU with 211 CO₂/N₂ selectivity obtained at 57°C using 1% CO₂ concentration feed gas
 - + 806 GPU with 173 selectivity obtained using 20% CO₂ conc. feed gas due to carrier saturation phenomenon
 - Performance improves as CO₂ conc. reduces
 - High-level techno-economic analysis conducted
 - + Capture cost of ~\$302/tonne CO₂ (in 2011 \$)
 - + 21.8% increase in COE

Acknowledgments

- José Figueroa
 - Strong Efforts & Helpful Inputs for CO₂-Sel. Membranes
- Yuanxin Chen Kartik Ramasubramanian Varun Vakharia Lin Zhao – CO₂-Selective Membranes
- Norman N. Li Richard Song – Nanoporous Membrane Support
- BASF in Wyandotte, MI – Free PES Samples
- Purolite Corporation, Bala Cynwyd, PA
 - Free Ion-Exchange Resin Samples

Acknowledgments for Financial Support

U.S. Department of Energy
 DE-FE0007632 and DE-FE0026919

 Ohio Development Services Agency
 OER-CDO-D-15-09 for Continuous Membrane Fabrication Machine

Decreasing Emissions Preserves Environment

