

Optimizing Reservoir Oil Displacement and CO₂ storage on the Texas Farnsworth Unit CMTC-486252-MS

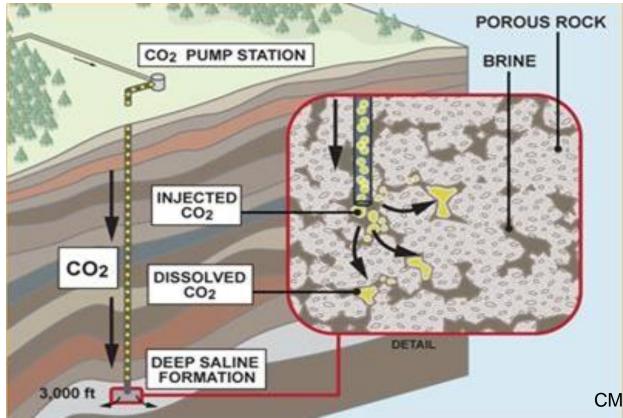
Authors: Edward Ennin, SPE, Reid Grigg, SPE

New Mexico Petroleum Recovery Research Center New Mexico Institute of Mining and Technology

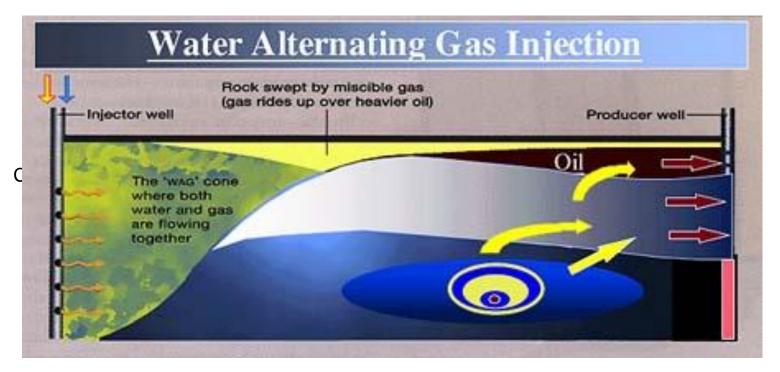
Presentation Outline

- Introduction
- Background
- Experimental Set-up
- •Theories and Principles [CO₂ storage]
- •Results [CO₂ storage]
- Discussion [CO₂ storage]

Presentation Outline


- •Theories and Principles [WAG & SWAG]
- •Results [WAG & SWAG]
- Discussion [WAG & SWAG]
- Conclusions
- Recommendations

Carbon Management



INTRODUCTION

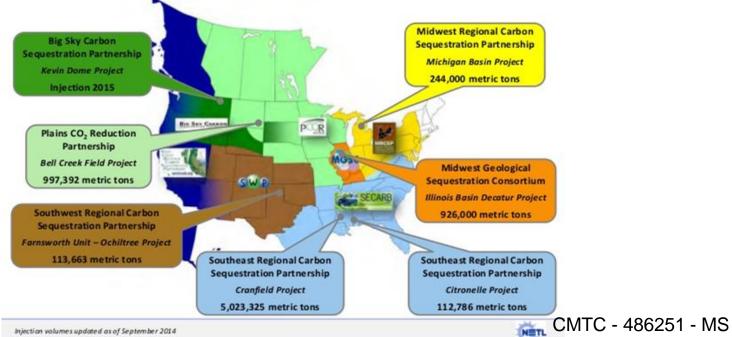
INTRODUCTION

Why measure displacement of brine and CO₂?

*CO₂ injection into Saline Aquifers is the future of carbon capture and storage (CCS)

*It has been shown that brine salinity change can affect the recovery rate in a waterflood, thus does it have an effect in CO_2 displacement?

*FWU salinity has had a significant decrease over time with the waterflooding using low salinity water as injectant.



- *WAG is widely used in field applications.
- *SWAG has not been used in field applications.
- *Worth knowing the effect of injection fluid dynamics of recovery factor.
- *PH difference between produced water and injection fluid. *Observe the risk of simultaneous injection of fluid.

Regional Carbon Sequestration Partnerships

Development Phase CO₂ Injection Volumes

Injection volumes updated as of September 2014

Farnsworth Unit (FWU)

Texas Panhandle

Discovered: 1950's

Waterflood started: 1964

CO₂ flood started: December 2010^{CMTC - 486251 - MS}

Theories and Principles [CO2 Storage]

*Absolute permeability in rock with single fluid, Darcy's law: $q = \frac{k A \Delta p}{\mu L}$

*Relative permeability determine with two or more fluid:

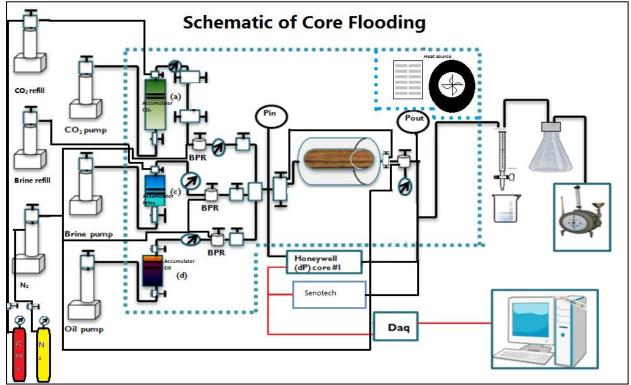
$$k_r = \frac{(q * \mu)_j * L}{A * (dp)_j * k_{abs}}$$

*Brine Saturation ratio of bri $S_W = \frac{V_{bp}}{PV}$ in rock:

Theories and Principles [CO₂ Storage]

•Drainage > non-wetting fluid displaces wetting fluid.

*Imbibition > wetting fluid displaces non-wetting fluid.


*Fluids present are brine and CO₂

*Brine wetting phase and CO₂ non-wetting phase.

Experiemental Setup

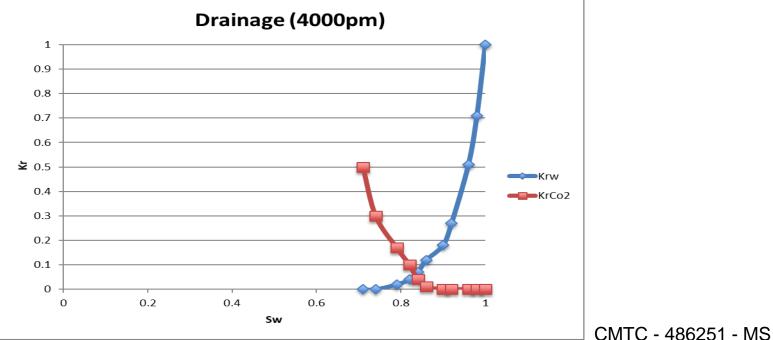
EXPERIMENTAL SET-UP

* Physical properties and dimensions of core used in this study.

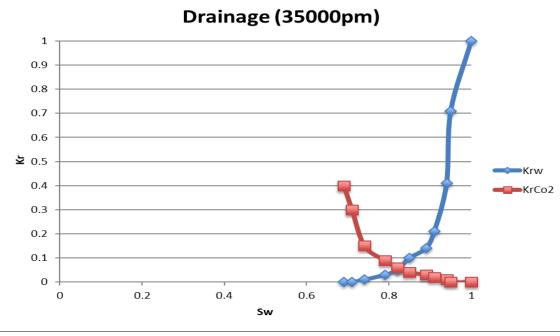
CORE (7- 13-15)		Units
Length	17.52	Cm
Diameter	3.77	Cm
Pore Volume	24.48	Cm^3
Porosity	12.48	%
Peameabilty	48.39	md

EXPERIMENTAL SET-UP(CO2 Storage)

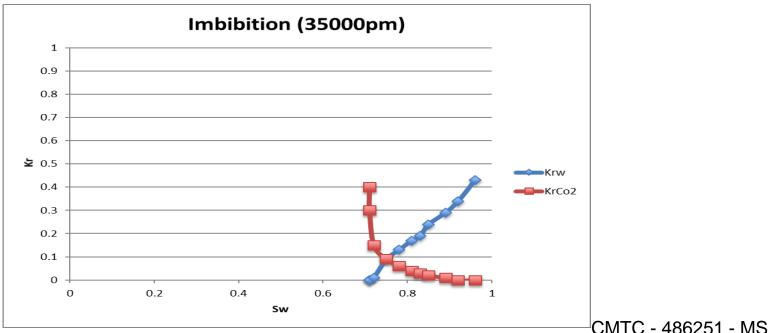
Injections Fluids Used :

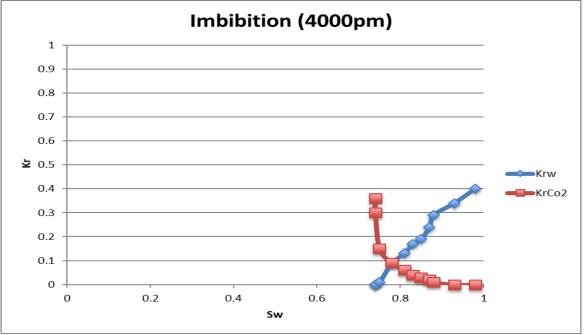

*Supercritical CO₂

*Brine(4000ppm)Farnsworth unit


*Brine(35000ppm)Sea Water

All tests performed at reservoir conditions of 168°F and 4400 psi CMTC - 4





Results [CO₂ storage]

End point values for gas and water saturations

Relative Permeability	Sw	Sg	Vol. of CO2 Stored(mL)
Drainage with 4000ppm	0.68	0.32	7.8336
Drainage with 35000ppm	0.69	0.31	7.5888
Imbibition with 4000ppm	0.74	0.26	6.3648
Imbibition with 35000ppm	0.73	0.27	6.6096

Discussion [CO₂ storage]

* Brine salinity of the aquifer had little or no effect on CO₂ storage in the cores tested under the conditions studied.

*Higher CO_2 storage was achieved during drainage, though significant storage remained after brine injection that followed the CO_2 injection.

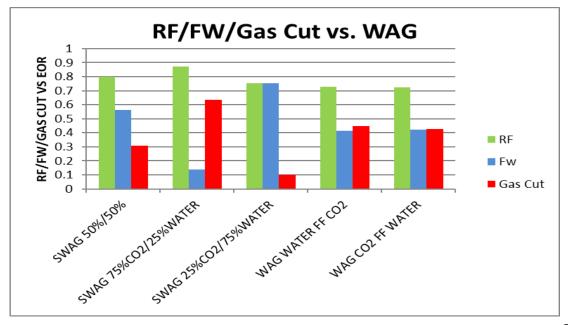
Theories and Principles [WAG & SWAG] *WAG is when water and gas are injected alternately for better sweep efficiency

*SWAG is when water and gas are injected simultaneously for better sweep efficiency

*Recovery Factor is ratio of recoverable oil to estimated oil in place.

Theories and Principles [WAG & SWAG] *Gas Cut is the ratio of gas produced to the volume of total fluids produced.

*Residual oil saturation is fraction of pore volume occupied by oil at the end of oil displacement.



Results [WAG & SWAG]

WATER AND ALTERNATING GAS	RF	FW	Gas Cut
SWAG 50%/50%	0.80	0.56	0.31
SWAG 75%CO ₂ /25%WATER	0.87	0.14	0.63
SWAG 25%CO ₂ /75%WATER	0.75	0.75	0.10
WAG WATER FF $\rm CO_2$	0.73	0.42	0.45
WAG CO_2 FF WATER	0.73	0.42	0.43

Results [WAG & SWAG]

Discussion [WAG & SWAG]

*WAG with 75% CO_2 and 25% recorded highest oil recovery

*WAG with 25% CO_2 and 75% recorded the least oil recovery

*WAG with 50%CO₂ and 50% water recorded a sizable recovery factor.

Conclusions

*The salinity of aquifer does not have an effect on its ability to store CO_2 .

*Drainage which the practical method of storing records the best results.

*SWAG is an effective EOR method.

*pH of injection fluids were lower the pH of produced water.

Recommendations

*Studies should be conducted on field application of SWAG

*Research into making CO_2 a stronger wetting agent should done to Aid sequestration.