
CO₂ Storage Resource and Reservoir Feasibility Assessment for Deep Saline Cambrian-Ordovician Formations in Eastern Ohio

Isis Fukai, Priya Ravi Ganesh, Mackenzie Scharenberg, Joel Main

July 20th, 2017

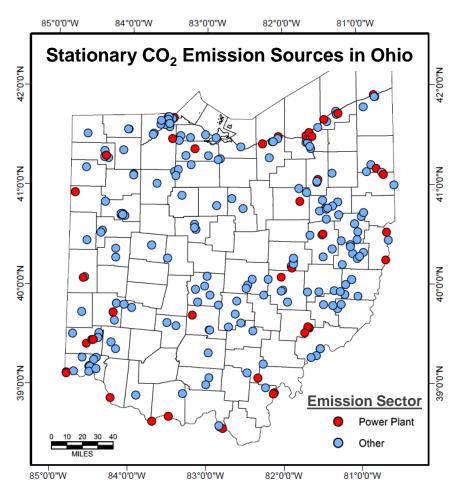
Carbon Management Technology Conference

Acknowledgments

This work is funded by the Ohio Development Services Agency – The Ohio Coal Development Office and the U.S. Department of Energy - National Energy Technology Laboratory.

Thanks to colleagues at NETL for guidance with CO₂-SCREEN; Coauthors & team members who contributed to the research

Development Services Agency


Project Overview

Problem

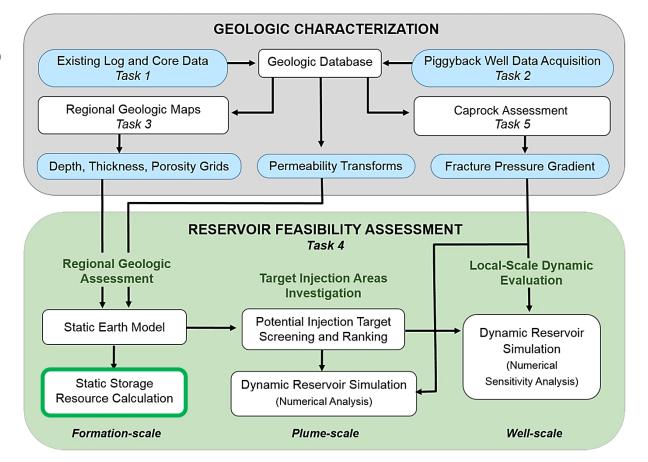
- Ohio responsible for ~25% of total CO₂ emissions reported in the United States¹
- Geologic resources available instate for CO₂ storage & climate change mitigation not well defined

Objective

Characterize deep saline formations & overlying caprocks to help define geologic storage framework for OH

Map showing the locations of stationary CO_2 emission sources in Ohio (EPA GHGRP, 2016; Battelle, 2017). Total reported 2015 emissions: 113 megatonnes CO_2

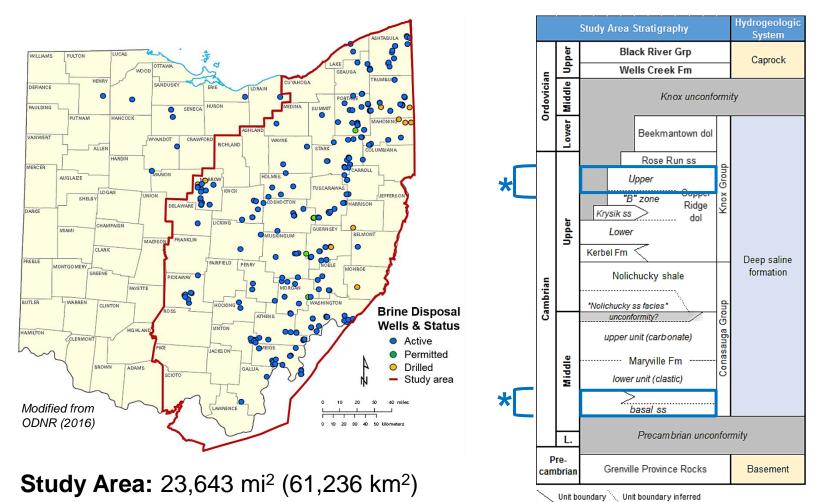
^{1.} Based on 2015 emissions reported to EPA GHGRP (2016)


Project Overview: Organization & Approach

Project divided into five main tasks

Focus: Static Storage Resource Assessment

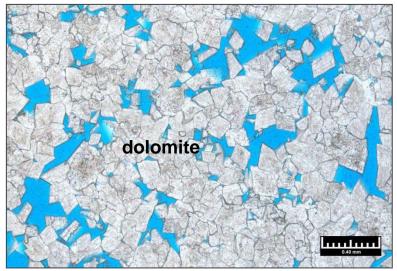
Formation-scale evaluation


Component of Reservoir Feasibility Analysis

Schematic showing overall project approach and task organization, with an emphasis on components of the Reservoir Feasibility Assessment (Battelle, 2017).

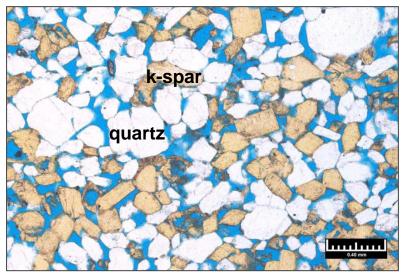
Study Area & Formations of Interest

Saline formations (reservoirs): brinesaturated sandstones and dolomites



area in eastern Ohio comprising

corridor of brine disposal wells


Formations of Interest

Upper Copper Ridge Dolomite

Thin-section photomicrograph in plane-polarized light showing an Upper Copper Ridge dolomite sample from the south-central portion of the study area (blue: porosity).

Basal Cambrian Sandstone

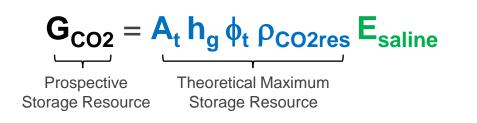
Thin-section photomicrograph in plane-polarized light showing a basal Cambrian sandstone sample from the southcentral portion of the study area (blue: porosity).

Formation	Area (mi²)*	Avg. Depth (ft.)	Avg. Gross Thickness (ft.)	Avg. Porosity (%)
Upper Copper Ridge dolomite	23,643	5,157	184	5
basal Cambrian sandstone	23,643	5,834	131	8

* Specific to the eastern Ohio study area

Static Storage Resource Assessment

Static (volumetric) method:


Uses subsurface pore volumes & in-situ fluid saturation to estimate an equivalent quantity of CO₂ that could potentially be stored

Total Pore Volume = **Theoretical Maximum Storage Resource**

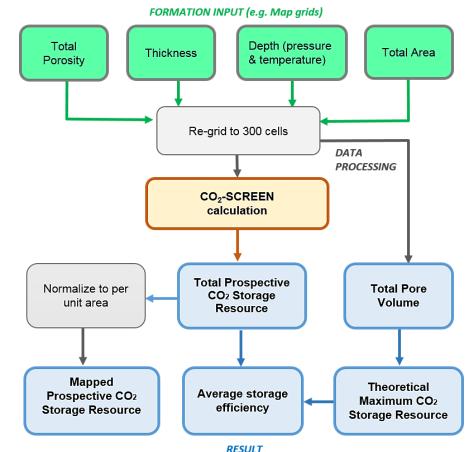
Net Pore Volume = **Prospective Storage Resource**¹

DOE-NETL Storage Resource Equation¹

Parameter ¹	Definition
Total Area (A _t)	Total area of formation
Gross Thickness (h _g)	Gross formation thickness
Total Porosity (φ _t)	Total formation porosity (interconnected+isolated+clay-bound)
ρco2res	Density of CO ₂ at reservoir temperature and pressure
Storage Efficiency (E _{saline})	Fraction of pore volume that is technically accessible for CO ₂ storage

1. DOE-NETL, 2010; 2012; Goodman et al., 2011; 2016

Static Storage Resource Calculation


Two grid-based methods:

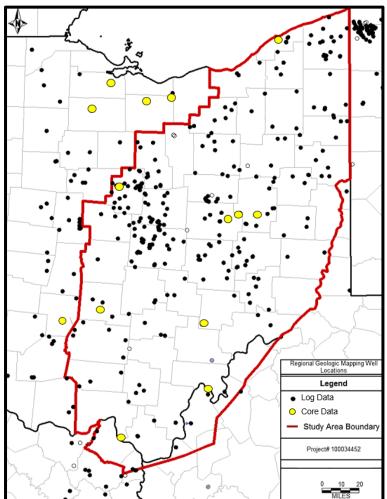
- 1. Static Earth Model (SEM) (3D, high resolution, deterministic)
- 2. CO₂-SCREEN¹ (low resolution, stochastic)

Same input data used for both grid calculations

Results compared to assess effects of model resolution and calculation method on Storage Resource outcomes

1. Sanguinito et al., 2016; https://edx.netl.doe.gov/organization/co2-screen.

Schematic showing the workflow for the CO_2 -SCREEN calculation, with 2D maps grids from the SEM re-gridded to the required resolution and then used to calculate and map the Prospective Storage Resource (Battelle, 2017).



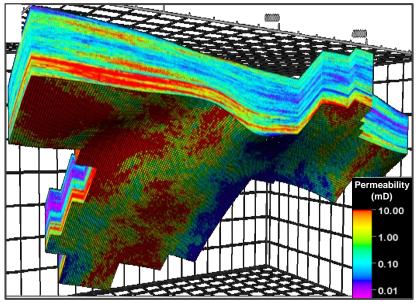
Static Storage Resource Calculations: Data Input

New and existing data compiled in previous tasks

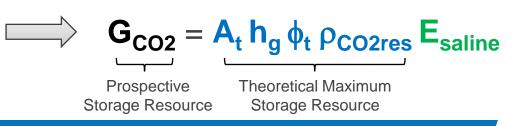
- Well logs from 413 wells in the study region: basic and advanced wireline logs
- Core data from ~15 wells

Data used to construct and populate Static Earth Model (SEM) for Storage Resource calculations

Locations of wells with log data and core data used to construct structure, thickness, and porosity maps for the formations of interest in the study area (Battelle, 2017).


Static Storage Resource Calculation: Static Earth Model (SEM)

SEM: 3D model of subsurface geology and pore volume for Cambrian-Ordovician deep saline formations in the study area


- Formation Structure (depth, thickness, lateral continuity)
- Petrophysical Properties (porosity, permeability)

2D map grids from SEM coarsened & used as input for CO₂-SCREEN

 CO_2 Storage Resource calculated deterministically directly in model using DOE-NETL equation & E_{saline} from CO_2 -SCREEN

Portion of the SEM developed for the eastern OH study area clipped to show the basal Cambrian sandstone interval at a selected site. The entire SEM has a total of 145,413,098 grid cells with X-Y-Z dimensions of 1,875 x 1,875 x 3ft (Battelle, 2017).

Static Storage Resource Calculation: DOE-NETL CO₂-SCREEN Tool¹

INPUT

Storage Efficiency Input	Auto-pop	opulated User		ecified	
Storage Enterinty Input	P ₁₀	P ₉₀	P ₁₀	P ₉₀	X 10
Net-to-Total Area	0.20	0.80	0	0	-1.39
Net-to-Gross Thickness	0.21	0.76	0	0	-1.32
Effective-to-Total Porosity	0.62	0.78	0	0	0.49
Volumetric Displacement	0.18	0.63	0	0	-1.52
Microscopic Displacement	0.39	0.82	0	0	-0.45

Physical Parameters

Mean and standard deviation values for each grid cell

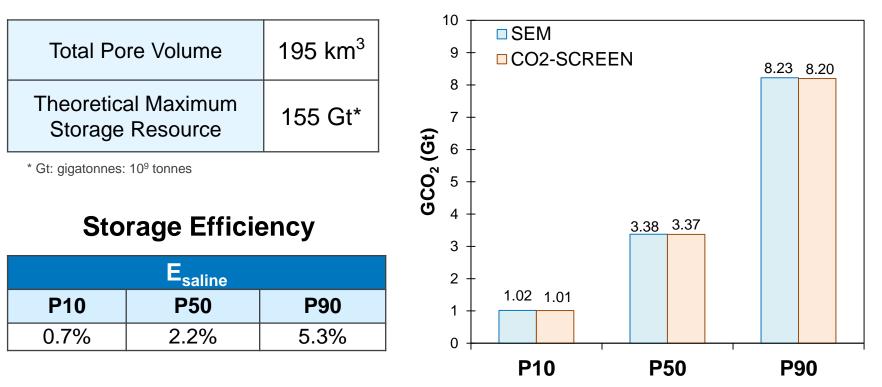
Grid cell #	Area* (km ²)	Gross Thic	kness * (m)	Total Porosity*(%)		
Grid CCi #	Mean	Mean	Std Dev	Mean	Std Dev	
1	109.2	97.1	0.0	4.4	0.0	
2	109.2	104.9	0.0	4.5	0.0	
3	109.2	116.6	0.0	4.1	0.0	
4	109.2	135.1	0.0	3.8	0.0	
5	63.8	157.2	0.0	2.9	0.0	
6	109.3	76.4	0.0	4.3	0.0	
7	109.2	92.6	0.0	5.2	0.0	
8	109.2	103.4	0.0	5.6	0.0	
9	109.2	110.1	0.0	4.8	0.0	
10	109.2	124.0	0.0	3.7	0.0	

1. Sanguinito et al., 2016; https://edx.netl.doe.gov/organization/co2-screen.

2. IEAGHG, 2009

RESULTS

GCO ₂ (Mt)						
Grid Cell #	P10		P50		P90	
1		2.4	8.1		19.5	
2		2.7	9.0		21.6	
3		2.8	9.2		22.2	
4		2.9	9.7		23.5	
5	1.6		5.2		12.5	
6	1.8		6.1		14.8	
7	2.7		9.1		21.9	
8	3.3		10.9		26.3	
9	3.0		10.0		24.1	
10	2.7		8.8		21.2	
CO ₂ Storage Statistics		P10	P50	P50 P90		Units
Summed CO ₂ Total		564	1873		4517	Mt
		0.6	1.9		4.5	Gt

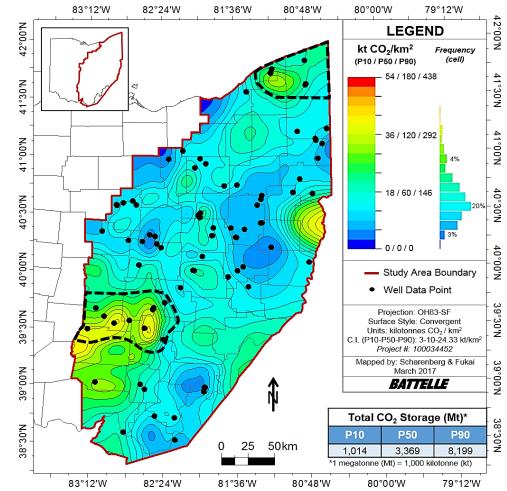

- Grid-based input & results: 300 cells
- Storage Efficiency defaults²
- Probabilistic Prospective Storage Resource estimates: P10, P50, P90

Storage Resource Results: Upper Copper Ridge Dolomite

Theoretical Maximum CO₂ Storage Resource

Prospective CO₂ Storage Resource

Less than 1% difference between SEM and CO₂-SCREEN results

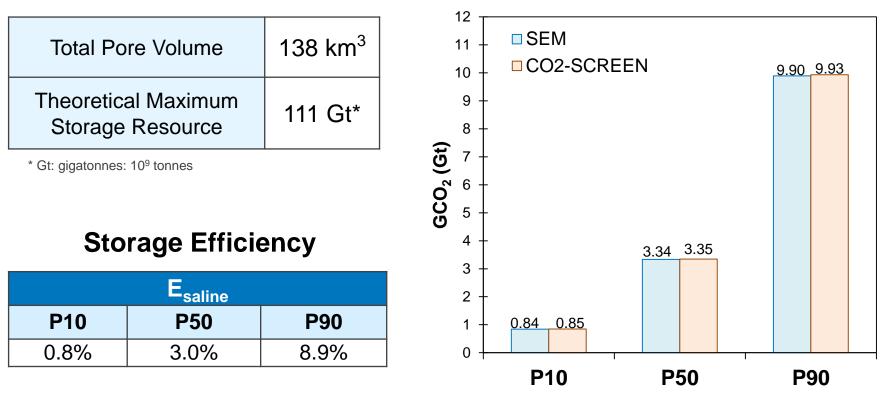

Storage Resource Results: Upper Copper Ridge Geospatial Analysis

Local Storage Resource Highs:

- Northeastern Ohio (Lake, Ashtabula counties)
- South-central Ohio (Pickaway, Fairfield, Hocking counties)

Areas are constrained by data from three or more wells within < 20 mi (32 km) distance

Right: Map showing the Prospective CO_2 Storage Resource (in kt/km²) for the Upper Copper Ridge Dolomite in the eastern Ohio study area (Battelle, 2017).



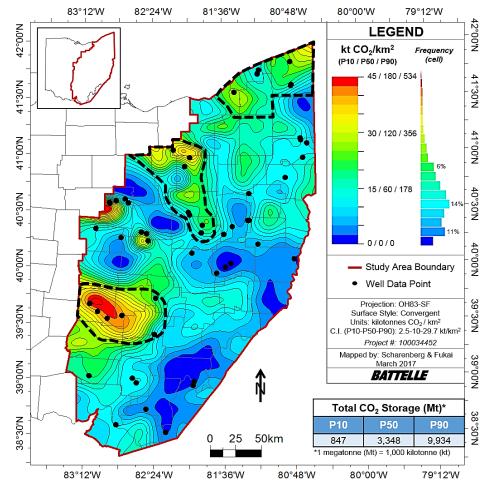
Storage Resource Results: Basal Cambrian Sandstone

Theoretical Maximum CO₂ Storage Resource

Prospective CO₂ Storage Resource

Less than 1% difference between SEM and CO₂-SCREEN results

Storage Resource Results: Basal Cambrian Sandstone Geospatial Analysis


Local Storage Resource Highs:

- Northeastern Ohio (Lake, Ashtabula, Cuyahoga counties)
- East-central Ohio (Medina, Wayne, Coshocton counties)
- South-central Ohio (Pickaway, Fairfield, Hocking counties)

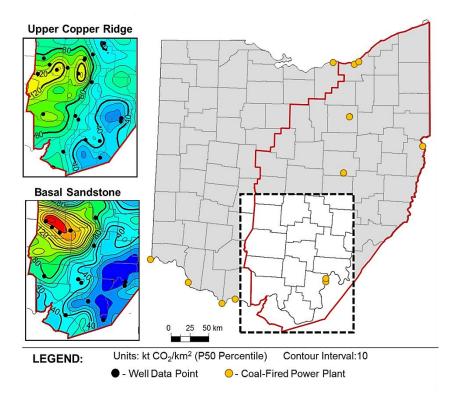
Storage resource highs in the northeast and south-central areas similar to Upper Copper Ridge

Local highs used to delineate sitescale models for dynamic analysis

Right: Map showing the Prospective CO₂ Storage Resource of the basal Cambrian sandstone in the eastern Ohio study area (Battelle, 2017).

Summary & Conclusions

A systematic workflow of static modeling exercises is used to help define the regional geologic storage framework of the eastern Ohio study area


Quantification of CO₂ Storage Resource for major deep saline formations

- Theoretical Storage Resource: 111-155 Gt
- Prospective Storage Resource: 3.4 Gt (P50)
- CO₂ storage efficiency: 2.2 3.0% (P50)

Less than 1% difference between SEM & CO₂-SCREEN results

Generation of Storage Resource maps

- Spatial distribution of storage resource
- · Help guide site selection for further analysis
- · Potential for stacked storage in some areas

800.201.2011 | solutions@battelle.org | www.battelle.org

BACKUP SLIDES

Storage Efficiency

Input & well counts

Depth		Thickness		Porosity		
Formation	Avg (ft.)	Well Data Count (n)	Avg (ft.)	Well Data Count (n)	Avg (%)	Well Data Count (n)
Upper Copper Ridge	5,157	252	184	202	2.1	84
basal sandstone	5,834	109	151	101	8.7	55

Parameter	Symbol	Definition
Net-to-Total Area	E _{An/At}	Fraction of the total area (map view) available for CO_2 storage
Net-to-Gross Thickness	E _{hn/hg}	Fraction of the gross thickness available for CO ₂ storage
Effective-to- Total Porosity	E _∳ e/ _{∲t}	Fraction of the total porosity that is interconnected, available for CO ₂ storage
Volumetric Displacement Efficiency	Ev	Combined fraction of net volume surrounding an injection well that can be contacted by CO_2 as a consequence of density, buoyancy effects
Microscopic Displacement	E _d	The fraction of pore space occupied by immobile in-situ fluids

 $\mathbf{E}_{\text{saline}} = \mathbf{E}_{\text{An/At}} \mathbf{E}_{\text{hn/hg}} \mathbf{E}_{\text{\phi}\text{e/\phi}\text{t}} \mathbf{E}_{\text{v}} \mathbf{E}_{\text{d}}$

