AUTOMOTIVE CO2 MITIGATION USING AN ONBOARD BOSCH REACTOR: ANALYSIS

MICHAEL BUCKNER, DR. THOMAS BRADLEY

COLORADO STATE UNIVERSITY

CMTC: JULY 20TH, 2017

OBJECTIVE

- Determine the technical and economic requirements of an automotive CO₂ reduction system
 - Determine preferred carbon product and method of expulsion from vehicle
 - Determine cost contributors
- Conduct a techno-economic and lifecycle analysis of implementing an automotive Bosch reactor
 - Determine the optimal operating conditions
 - Determine the optimal design

AUTOMOTIVE CO2 REDUCTION

Preferred carbon product

- Non-corrosive
- Cheap to dispose
- Non-gaseous
- Cost Goals
 - Minimize the amount of hydrogen required to store onboard
 - Determine feasibility of regenerative and non-regenerative catalysts
 - Need to mitigate carbon "coking" on catalyst surface

BOSCH REACTION

• Composed of 4 different reactions

Reaction	Formula	$\Delta \mathbf{H}$
Reverse Water Gas Shift	$CO_2 + H_2 \rightarrow CO + H_2O$	41 kJ/mol
Hydrogenation	$CO + H_2 \rightarrow C(s) + H_2O$	-131 kJ/mol
Boudouard	$2CO \rightarrow C(s) + CO_2$	-172 kJ/mol
Sabatier	$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$	-165.4 kJ/mol

REACTION RATES (EQUILIBRIUM CONSTANTS)

- Developed by solving each species' transport equation simultaneously with its energy balance
- Temperature dependent equilibrium constants developed by comparing fugacity ratios to differences in Gibb's free energies at actual and reference conditions (chemical activity)

$$K_i = \exp\left[\frac{\lambda_1}{T^2} + \frac{\lambda_2}{T} + \lambda_3\right]$$

Description	Reaction	Equation	λ_1	λ_2	λ_3
1. CO_2 Methanation	$\rm CO_2 + 4H_2 \rightleftharpoons \rm CH_4 + 2H_2O$	Eq. 1	-730,726.0	$24,\!125.3$	-26.9616
2. CO Methanation	$\rm CO + 3H_2 \rightleftharpoons CH_4 + H_2O$	Eq. 2	-538,798.1	28,062.7	-30.7759
3. Reverse WGS	$\rm CO_2 + H_2 \rightleftharpoons \rm CO + H_2O$	Eq. 4	-191,928.1	-3,937.4	3.8143
4. Hydrogenation	$\mathrm{CO} + \mathrm{H}_2 \rightleftharpoons \mathrm{C}(s) + \mathrm{H}_2\mathrm{O}$	Eq. 5	-121,003.4	$16{,}573.0$	-17.3858
5. Boudouard	$2\mathrm{CO} \rightleftharpoons \mathrm{C}(s) + \mathrm{CO}_2$	Eq. 6	70,924.7	$20,\!510.4$	-21.2000

REACTION RATES (GAS PHASE EQUILIBRIA)

- Methanation
- RWGS
- Hydrogenation
- Boudouard

 $r_{1} = \frac{k_{1}K_{CO_{2},1}K_{H_{2},1}^{4}z_{CO_{2}}z_{H_{2}}^{4}P^{5}}{\left(1 + K_{CO_{2},1}Pz_{CO_{2}} + K_{H_{2},1}Pz_{H_{2}}\right)^{5}}\left(1 - \eta\right)$

$$r_3 = k_3 \rho P \left(z_{CO_2} z_{H_2} K_3 - z_{CO} z_{H_2O} \right)$$

 $r_4 = k_4 \rho \left(z_{CO} z_{H_2} K_4 P - z_{H_2 O} \right)$

$$r_{5} = \frac{\rho_{\text{cat}}\epsilon_{o}k_{B}^{+}K_{CO,5}\left(Pz_{CO} - \frac{1}{K_{B}^{*}}\frac{z_{CO_{2}}}{z_{CO}}\right)}{\left(1 + K_{CO,5}Pz_{CO} + \frac{1}{K_{O,CO_{2}}K_{CO,5}}\frac{z_{CO_{2}}}{z_{CO}}\right)^{2}}$$

PROPOSED REACTOR DESIGN

CATALYST COKING

• Assume nickel catalyst is completely regenerative

- Needs mechanical or magnetic agitation
- For ~ 105 kg CO₂ in 1 tank of fuel
 - 1.38 kg steel wool required (packing density = $0.2g/cm^3$)
 - Volume steel wool required to avoid coking disadvantage = 0.0069m^3

PROCESS CONSIDERATIONS

• Reaction rate altering characteristics

• Temperature

ENGINE EXHAUST STREAM

- Higher Fuel/Air Equivalence Ratio \rightarrow More H₂ produced in combustion
 - Less H₂ required in onboard tanks
 - Higher concentration of CO
 - Decreases fuel economy

EFFECT OF REACTOR VOLUME

- Higher Volume \rightarrow Lower Conversion
 - Lower pressure (diffuse)
 - Lower reaction rate
- Lower Volume \rightarrow Higher Conversion
 - Higher pressure
 - Higher activity
 - Higher reaction rate
 - Need to minimize exit pressure

EFFECT OF TEMPERATURE (RATES)

- Directly affects reaction rate constant
 - Higher T \rightarrow RWGS
 - Lower T \rightarrow Methanation

Fuel Air Ratio= 2.3

Fuel Air Ratio= 1.2

EFFECT OF TEMPERATURE (CONVERSION)

WHY INCREASE FUEL AIR RATIO?

- Produce more CO and H₂ in combustion equilibrium
- Bypass RWGS reduction (endothermic)
- Increased power generation
 - Higher fuel content
 - Improved turbo-diesel operation
- One less methanation stage
- Can mitigate higher fuel use by decreasing engine size
 - Lower Volumetric Flow Rate

https://www.dieselnet.com/tech/images/air/turbo/~turbocharger.jpg

ENERGY & CARBON BALANCE

Carbon expelled per tank ~= 74% * 30.1 kg C / tank = 22.7 kg carbon / tank

COST FACTORS

Cost Factor	Cost
H ₂ Tanks	\$250/tank
Reactor Cost	\$1600 or \$50/tank
H ₂ Cost / kg	\$1.80/kg
Additional Fuel Cost / gal	\$2.27/gal

0

ACKNOWLEDGEMENTS

- Dr. Thomas Bradley
- Dr. Allan Kirkpatrick
- EcoCAR3 at Colorado State University

REFERENCES

- Abney, Morgan B., and J. Matthew Mansell. "The Bosch Process Performance of a Developmental Reactor and Experimental Evaluation of Alternative Catalysts " Ntrs.nasa.gov. 9 Jun. 2016. Web. 22 Mar. 2017.
 https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100033001.pdf
- Swickrath, Michael J., and Molly Anderson. "The Development of Models for Carbon Dioxide Reduction Technologies for Spacecraft Air Revitalization "Ntrs.nasa.gov. 10 Apr. 2013. Web. 23 Mar. 2017.
 https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120004277.pdf
- N.a. "Cast steel prices per lb, kg and ton in China for price evaluation." Iron-foundry.com. 26 Feb. 2017. Web. 4 May 2017.
 http://www.iron-foundry.com/cast-steel-prices-lb-kg-ton.html
- Akse, James. "Regenerative Bosch Reactor" Ntrs.nasa.gov Web. 23 Mar. 2017 < http://techport.nasa.gov/file/13504>
- Ferguson, Colin R., and Allan Kirkpatrick. Internal Combustion Engines: Applied Thermosciences. Chichester, West Sussex, United Kingdom: John Wiley & Sons, 2016. Print.