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Main Objectives:

|dentify and frame critical
aspects of the CCUS Electric
Power for CO2- EOR.

A quick review of the
Integrated assessment
methodology for decision-
making in complex systems

Develop a first approach to a
broad decision-making
framework for CCUS Electric
Power for CO2- EOR
systems

WHAT STARTS HERE CHANGES THE WORLD

CO,-EOR/Storage Carbon Balance
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Brief overview

Land & Ocean Temperature Percentiles Apr 2016
NOAA's National Centers for Environmental Information
Data Source: GHCN-M version 3.3.0 & ERSST version 4.0.0
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BROWN TO GREEN:
THE G20 TRANSITION TO A LOW-CARBON
ECONOMY | 2017 by Climate Transparency

UNITED STATES I%

(& CLIMATE POLICY PERFORMANCE

COMPATIBILITY OF CLIMATE TARGETS WITH A 2°C SCENARIO "

MtCOhedyear

B000
/H—m\r—-— — — Emissions projections
® - (excl. LULUCF*)

6000 — —_—
®  Max ernissions level
under mitigation targets
4000 Min. emissions level
under mitigation targets
2000 Climate Action Tracker's medium
to sufficient 2°C emiszions range
0
=== Historical emizsions
(mxcl. LULUCF®)
—2000
1920 1995 2000 2005 2010 2015 2020 2025 2030 *{ond Usa Land Use Change and Forestry

Souce: CAT, 2017




THE UNIVERSITY OF

TEXAS WHAT STARTS HERE CHANGES THE WORLD

= ATAUSTIN——

Brief overview

* Means Energy de-carbonization:

— Transportation electrification

— Phase-out large number of coal-fired Power Plants by 2030
— Significantly share growth of renewables (+70%)

— Carbon Capture, Utilization and Sequestration (CCUS)

— Side demand energy efficiency.

e Simultaneous implementation of these technologies
 CCUS should be a priority [IPCC, 2013]

* All the Global Climate Change models necessarily
include CCUS
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Brief overview
What is CCUS?

From: CCS, IPCC,2005)
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System Characterization

Electric Power Sector

Strategical High Value Sector
High Capital Intensive
Integrated and interconnected system

Major changes in markets pressure the
system to Iits operable limits

Planning Is becoming increasingly
complex
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Figure from: DOE - Quadrennial
Energy Review
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System Characterization
CCUS in Electric Power Sector

« CCUS is a key factor in least-cost transitions to a low-
carbon electricity system in 2050

« The scale of Power Plants force thinking their integration
to a CCUS system

« Capture technology is expensive and energy intense
« Energy penalties reduce competitiveness

* Low energy prices, low demand growth, more renewals
share and others limits investments on CO2 capture

* Power Sector CO2 supply require long term demand
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System Characterization
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Business Models

CO2-EOR: activity dominated by independents

Predominant CO2 source: Gas Processers and Fertilizer
plants

Operators look for Upstream integration building pipelines

Two large independent companies control half of total CO2-
EOR production and expanding

Petranova, CCUS Coal firered Power Plant. New player build
a downstream integration model.
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MAIN DIFILCULTIES INTEGRATING THIS
CCUS SYSTEM 1/2

« Alignment of the industries sectors that integrate the CCUS
system (economic performance)

« Strategic sectors has high regulatory intervention that has to
harmonized

* Product optimization and emission intensity
 CO2 emissions: externality vs commodity

DAILY ENERGY DEMAND Cumulative Load Duration Curve
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MAIN DIFILCULTIES INTEGRATING
THIS CCUS SYSTEM 2/2

« Assignment of the environmental responsiblilities (the
environmental performance -LCA)

« Different methodological approaches to emissions
accounting and allocation processes.

« DOE-NETL recommends system expansion with
displacement (Skone et al., 2016)

— which product or process of the systems (up, middle, or
downstream),

— under which criteria (cost or emission efficiency, marginal or
average), and

— All or part of it?
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Decision Making (methodological Approach)

« Common practices

— two different methods are commonly known, not integrated
for environmental and economic evaluation (LCA and
LCC)

— Different purpose different method and scope
— From LCA-LCC to ELCC

From Norris, G, 2001

Tool/Method LCA LCC
Purpose Compare relative environmental performance of alternative Determine cost-effectiveness of alternative investments and

product systems for meeting the same end-use function, from | business decisions, from the perspective of an economic

a broad, societal perspective decision maker such as a manufacturing firm or a consumer
Activities which are All processes causally connected to the physical life cycle of | Activities causing direct costs or benefits to the decision
considered part of the product; including the entire pre-usage supply chain; use | maker during the economic life of the investment, as a result
the 'Life Cycle’ and the processes supplying use; end-of-life and the of the investment

processes supplying end-of-life steps |
Flows considered Pollutants, resources, and inter-process flows of materials Cost and benefit monetary flows directly impacting decision

and energy maker .
Units for tracking Primarily mass and energy; occasionally volume, other Monetary units (e.g., dollars, euro, etc.)
flows physical units |
Time treatment and | The timing of processes and their release or consumption Timing is critical. Present valuing (discounting) of costs and
scope flows is traditionally ignored; impact assessment may address | benefits. Specific time horizon scope is adopted, and any

a fixed time window of impacts (e.g., 100-year time horizon costs or benefits occurring outside that scope are ignored

for assessing global warming potentials) but future impacts '

are generally not discounted
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Decision Making (methodological Approach)

 Integrated Framework

— The CCUS system for EOR integrates productive sectors of

significant national relevance in terms of economy, security and
environment

— System optimization and appropriate cost-benefit assessment
necessarily goes through an overview both cross-sector and
public-private trade-off

— Integrated Analysis for: Feed Stock, PowerPlant, CO2-EOR site,
Refinery and Product combustion
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Decision Making (methodological Approach)

* System Assessment * System Assessment (cont..)

Planning and Projection
* Technology Readiness Levels
* Technology Roadmapping
* Expert Elicitation
* Experience Curve Analysis

Analysis Tools and Metrics

* Life-Cycle Assessment Overview
° Greenhouse Gas Emissions
° Other Emissions

Water Use

° Land Use

* Materials and Criticality

* Reliability and Resilience

* Other Metrics

* Risk and Uncertainty Technology e Economics metrics

* Levelized Cost of Energy

 Life-Cycle Cost -LCC- (e.g PTlLaser,
TCAce)

* Environmental Life-Cycle Cost -
ELCC-

Evaluation Tools
* Options Space Analysis
* Wedge Analysis
* Integrated Assessment Models
» Science of Human Decision
Making
* Real Options Valuation
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General Methodological Proposal

« System Assessment System Assessment (cont..)

* Risk and Uncertainty Technology Analysis Tools and Metrics

e CO2-EOR site selection- * Life-Cycle Assessment
Characterization and technology * GHG
implementation * Water Use

* CCUS Power Plant * Land Use

* Vehicle efficiency * Economics metrics

* Planning and Projection * Levelized Cost of Energy
 Technology Readiness Levels * LCC(e.g PTLaser, TCAce)
 Technology Roadmapping * ELCC

* Expert Elicitation e Evaluation Tools

» Experience Curve Analysis * Integrated Assessment Models
* Real Options Valuation

Key aspects of this proposal would be modeling the operation and
iInvestments of the Grid (e.g. ERCOT) system by minimizing the cost
to meet the emission reduction goals
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Conclusion

« CCUS in Power Plants for CO-EOR is a very complex cross-sector
system that require be develop at the minimum economic and
environmental cost

* The real value of CCUS can only be determined by an integrated
analysis of economic and ecological performance

* The integrated assessment models require greater diffusion and
validation that allows standardization and implementation in different
levels of analysis. In particular for the making of private decisions

* Methodological proposal must be reviewed and refined in order to
Improve the decision making in the CCUS system
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Questions?
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It's a Complex Problem
LCA for CO,-EOR have many path ways, products and sub products
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It's a Complex Problem

LCA for CO,-EOR have many path ways, products and sub products
Gate-Gate Boundary

Crude Oill

Hydrocarbon

Energy

CO,
makeup

Jarrel, P.; et. all.(2002), Practical aspects of COZ2 flooding Disposal
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My contribution:

Central Objective: Create model to analyze the relation between energy

consumption, oil production, CO2 injection, GHG emissions and sequestration
oriented to achieve the NCNO classification for CO2-EOR Operations and energy

efficiency recommendations.
Specific objective : & |
* Review the boundaries criteria ! !
: co, !
. . . " . =
+  Homogenize the functional units ! "’1 ! o eplsmentand |
! (optional) emissions credit) |1
| dco ]
! " ICO;: Da‘h dralinnlf J t rine/Crude |
«  Clearly understand the CO2-EOR Ll ecionwe |1 1 5;;;23:5:3;:: el = | S
surface operations/emissions/energy i 7 : f : !
efficiency 1 = | [t
! Inject?on t : Raﬂnemen’t,
. : Lifting of | Produc;Tl:anspclt.
«  Collaborate with other phases of the ! Bttt LA
| free flowing] \
pl’OjeCt | ! i
! njected Flul rine Brine to WAG : Water Injection Operations
L4 Present advances Of the mOdel : Subalurllace:rzni:or\, Prnzulriminn — Dtsg‘;::letlon — or 1 %co1 lnjeition Ope:ations
develo ed 1 Storage and Leakage & Injection Disposal Injection : 7 )
Production Operatlo ns
P I — . ! %G e o
L o o o e o o i s e eologic Formation
. . System Boundary __
* Help developlng Strategles that A Figure 2-1 Simplified System Boundary for Operation Phase of “Gate-to-Gate” Life Cycle Assessment of CO,-Based
COI’]d ucive tO aChIEVIng a NCNO Enhanced Oil Recovery. Dotted line indicates study boundary.

classification.
Dilmore, Robert M. (DOE/NETL), 2010. An Assessment of Gate-to-Gate Environmental Life Cycle 24
Performance of Water-Alternating-Gas CO2-Enhanced Oil Recovery in the Permian Basin, pp 206
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Our Efforts

v Reviewed, process, classified and referred in the reports to
DOE-NTEL large number of studies (60+)

v’ Selected the most consistent and commonly referred works

v' Conversions and calculations

v Developed some schematics with all significant components

for EOR and established the mass and/or energy flow

between them

v Sought without much success a detailed real list of surface

equipment and its operating conditions
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System boundaries of previous studies

Aycaguer et al. 2001, 40 years

Suebsiri et al. 2006, 25 years

Khoo and Tan 2006, 40 years

Jaramillo et al. 2009, 8-21 years

DOE-NETL 2009 years/cases: West Texas-30, California-24 &
Missisippi-21

Extraction,
processing, fossil
fuel transport

Hertwich et al. 2008, 30 years

Natural CO2 Cooney et al. 2015, 25 years

reservoir

Power Plant

CO2 capture

transport to

field *Only combustion of gasoline vehicle

*Total combustion of products, medium oil
*Only average car gasoline combustion

Product

Crude oil Petroleum Product
transport refining transport

combustion /
usage

Geological
carbon
sequestration

Construction
of CO2-EOR
facilities

Decommissioning
of CO2-EOR
facilities
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Summary

« (Goings-on:

v Selected the system boundaries relevant to NCNO classification

v" ldentification of critical CO, emission components within the EOR site

v" Homogenize the functional units to determinate the parameter in our study
v Looking for Cranfield CO,-EOR electricity consumption

 Next Tasks:

In_current Study

— Build a model for energy consumption of the CO,-EOR operation

— Start scenario analysis

— Identify and analyze significant relationships between energy
consumption, oil production, CO2 injection, GHG emissions and
sequestration

— Link results from numerical simulations with energy consumption model

— Help developing the strategies to achieve the NCNO classification for CO2-
EOR Operations and energy efficiency recommendations
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Conclusions

« Carbon balance of CO,-EOR is sensitive to the system boundary.

* In a gate-to-gate life cycle analysis, the electricity consumption (purchased and
generated) is responsible for almost all the emissions associated with the EOR
operation, particularly at the CO, separation and compression processes.

« Each CO,-EOR facility is unique. Different facility dissing and operational
strategies, different energy requirements, performance and GHG emissions

« Electricity consumption data is critical to allow appropriate correlation in
mass/energy flows. Not have this would lead to assume generalizations with
very high uncertainties.

« Carbon balance is sensitive to CO2 flood performance (CO2 utilization rates).

« Auniversal methodology for NCNO classification will certainly benefit CO,-EOR
operations as there might be an economic impact if potential future regulations
provide value to the emissions and/or storage of CO.,.
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Future ODbjectives:

— Abstract that summarizes the conceptualization and first results of our
model

— Draft conceptualization of a proposal for research:

The economic Implications of:
o CO2-EOR Operations with Classification NCNO (with VN)
o Corrosion Behaviors in CO, Injection Wells (with Al)
o Complement other studies

Other topics of interest:
o CCS Public acceptance (Japan)
o CO, Pricing

— Start with contacts in L.A. Oil Companies managers, decision maker,
academic and research institutions oriented to promote BEG research,
cooperation and interchange interests. (goin-on)
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Selection of system boundaries for NCNO classification:
Cradle-to-Grave

Extraction,
processing, fossil ——— Selected system boundary
fuel transport
—— Study focus
Power Plant Naturel CPZ
reservoir
CO2 capture co2
transport to
CO2-EOR Crude oil Petroleum Product Product
operations transport refining transport combustion
Geological Construction
carbon .
of facilities
sequestration
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Strategic Power Plant Investment Planning under
Fuel and Carbon
Price Uncertainty by Ansgar Geiger 2010
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Original Oil in Place: 596 Billion Barrels*
"Stranded" Oil in Place: 400 Billion Barrels*

Future Challenge
400 Billion Barrels

Proved Reserves
21 Billion Barrels

*Excludes deepwater Gulf of Mexico
Source: Advanced Resources Int'l. (2008)
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ldem befor (31)

Total Prirmary Energy Supply (P Sharein 2014
100.000
Renewables
(indl. hydro and excl.
residential biomass)
75.000
Mudlear
(zas
50.000
3%  Smo
25000 .
21% wE o
0 Source I, 7076
MNote: nurmbers might not add up to 100% due fo exclusion of
1920 1995 2000 2005 2010 2014 resigiential biomass from the share of renewables.
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Integrating Life Cycle Cost Analysis
and LCA, InLCA: Selected Papers

Scenarnio Builder for
Accidents/Liabilities,

Cross- s/Lid
functional team | Possibilities,
brainstorming i Intangible Outcomes,
Corporate Cost |

Analysis

System Resulis: |
per year or per
unit of
production

Monie Carlo Simulation
of Futures and Cost

Consequences

Corporate and
public
databases

A. Norris

LCA Results:
per functional
unit

Cost Type Description

Type 1: Diract Direct costs of capital investment, labor, raw mater
costs. Includes both capital and O&M costs

Type 2: Indiract Indirect costs not allocated to the product or proce:

Includes bath capital and O&M costs

Type 3: Contingent

Contingent costs such as fines and penalties, oost
liabilities

Type 4: Infangible

Difficult to measLre costs, including consumer ace
wellness, corporate imags, community relations

Type 5: Extemnal

Costs bome by parties other than the company {e.i
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Integrating Life Cycle Cost Analysis

and

LCA, INLCA: Selected Papers

Gregory A. Norris

Tool/Method

LCA

LCC

Purpose

Compare relative environmental performance of alternative
product systems for meeting the same end-use function, from
a broad, societal perspective

Determine cost-effectiveness of alternative investments and
business decisions, from the perspective of an economic
decision maker such as a manufacturing firm or a consumer

Activities which are

All processes causally connected to the physical life cycle of

Activities causing direct costs or benefits to the decision

a fixed time window of impacts (e.g., 100-year time horizon
for assessing global warming potentials) but future impacts
are generally not discounted

considered part of the product; including the enfire pre-usage supply chain; use | maker during the economic life of the investment, as a result
the 'Life Cycle’ and the processes supplying use; end-of-life and the of the investment
processes supplying end-of-life steps
Flows considered Pollutants, resources, and inter-process flows of materials Cost and benefit monetary flows directly impacting decision
and energy maker
Units for tracking Primarily mass and energy; occasionally volume, other Monetary units (e.g., dollars, euro, etc.)
flows physical units
Time treatment and | The timing of processes and their release or consumption Timing is critical. Present valuing (discounting) of costs and
scope flows is traditionally ignored; impact assessment may address | benefits. Specific time horizon scope is adopted, and any

costs or benefits occurring outside that scope are ignored
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CO2 Enhanced Oil Recovery
Institute for 21st Century Energy | U.S. Chamber of Commerce U.S.
Chamber of Commerce

(=]
o
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Nuclear 8% (8%)
Power generation efficiency and fuel switching 3% {1%)

Renewables 21% (23%)

wvi
o

End-use fuel switching 12% (12%)
(CS14% (17%)
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End-use fuel and electricity efficiency 42% (39%)
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Note: Per IEA, the numbers in parentheses are shares in 2050. For example. 14% s the share of CCS in cumulative emigsion
reductions through 2050, and 17% is the share of CCS in emission reductions in 2050, compared with the § “C Scenano

{Source: 2013 IEA Global CCS Roadmap).




THE UNIVERSITY OF

TEXAS WHAT STARTS HERE CHANGES THE WORLD

—— AT AUSTIN —

New unabatedl coal is no
compatible with keeping
global warming below 2°C
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Figure 3: Primary energy demand for coal under IEA's medium-term coal market report and IEA Scenarios 2D5, 4DS and 6DS
consistent with 2, 4 and 6 degrees warming above pre-industrial levels in the long term. Source: IEA/Gagné, 2012, adapted.
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New unabatedl coal is not
compatible with keeping
global warming below 2°C

Statement by leading climate and energy scientists

FOSSIL FUEL RESERVES

| 3,863 GiCO, |
Oil Gas Coal
982 GiCO, 4690 GICO, 2,191 GICO,

2°C budget
1050 G1CO;,
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Institute for 21st Century Energy | U.S. Chamber of Commerce U.S. Chamber of
Commerce

EOR Delivers Aimost as Much Production as Primary
or Secondary Recovery

Tertiary
Recovery
(CO, EOR)

~17%

Remaining
Oil

Secondary

Recovery
(waterfloods)

~18% Primary

Recovery
~20%




