
 

 

 

CMTC-486642-MS 

Applicability of Worldwide CO2 Worldwide Immiscible Flooding and 
Prediction 
Na Zhang, Mingzhen Wei, Baojun Bai, Missouri University of Science and Technology 

Copyright 2017, Carbon Management Technology Conference 
 
This paper was prepared for presentation at the Carbon Management Technology Conference held in Houston, Texas, USA, 17-20 July 2017. 
 
This paper was selected for presentation by a CMTC program committee following review of information contained in an abstract submitted by the author(s). 
Contents of the paper have not been reviewed and are subject to correction by the author(s). The material does not necessarily reflect any position of the 
Carbon Management Technology Conference, its officers, or members. Electronic reproduction, distribution, or storage of any part of this paper without the 
written consent of the Carbon Management Technology Conference is prohibited. Permission to reproduce in print is restricted to an abstract of not more than 
300 words; illustrations may not be copied. The abstract must contain conspicuous acknowledgment of CMTC copyright. 
 

Abstract 
Carbon dioxide (CO2) flooding is a mature technology in oil industry that finds broad attention in oil 
production during tertiary oil recovery (EOR). After about five decades of developments, there have 
been many successful reports for CO2 miscible flooding. However, operators recognized after 
considering the safety and economics that achieving miscible phases is one of big challenge in fields 
with extremely high minimum miscible pressure (MMP). Compared with CO2 miscible flooding, 
immisible flooding of CO2 demonstrates the great potential under varying reservoir/fluid conditions. 
A comprehensive and high-quality data set for CO2 immiscible flooding is built in this study. Valuable 
guildelines have been concluded,and production prediction models are established to further assist the 
applicability of new projects for the first time. Results show that along with the current method in 
literature to find applicability guidelines, prediction models involved with important operation and 
prodcution parameters help to increase the accuracy of CO2 immiscible applicabilities. Data involved 
in this study are checked for independence for feature selection before utilization. We also find that 
support vector machine could predict the enhanced oil production rate and CO2 injection efficiency 
better than multiple linear regression method based on the data set. Furthermore, the multiple linear 
regression method build an excellent model for the prediction of enhanced oil recovery with an 
accuracy of almost 100%. 
 

Introduction 
A prodiction model is a tool for decision making and problem solving that has been applied in variety 
of fields (e.g., medical science [1-3], meteorology [4], transportation [5, 6], business [7, 8], biology [9, 
10], and chemistry [11, 12]) for further applicability evaluation. Eagle et al. built a prediction model 
to accurately estimate the risk of six month mortality after patients have been hospitalized for acute 
coronary syndrome (ACS), which provides guidance of the intensity of therapy to clinicians in clinical 
medicine [13]. Gendt et al. established a numerical weather prediction model to help people to make 
plans for many activities (e.g., farmers to find the best time for harvest; pilots to schedule the safest 
path, etc. [14]). In a prediction model, prediction accuracy mainly depends on the methodology of 
prediction and the quality of data that fed into the model, which is one of the crucial indicator to 
evaluate the effectiveness of models that researchers spare no efforts to pursue as high of an accuracy 
as possible. 
Based on literature, prediction methodology has changed dramatically. In the past, most of prediction 
models were established based on equations and experience [15]. With the worldwide development of 
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advanced technology in recent years, implementing machine learning to build prediction models is 
becoming a topic of interest. This method feeds the model not only with expert experiences, but also 
with algorithms to reveal the unknown information, which increases prediction accuracy. On the other 
hand, data quality problems which involves consistency, redundancy, missing data, wrong data, and 
feature selection, affect the prediction accurancy as well. Although enhancing the data quality may 
increase the prediction accuracy even more [16, 17], fewer attentions have been put onto the data 
quality improvement. If poor data are fed into the model, then the predicton model will be misleading. 
In oil industry, prediction models have been applied for drilling [18], production [19, 20], reservoir 
characterization [21], and well completion [22]. As one of the important enhanced oil recovery (EOR) 
techniques,  prediction models for CO2 immiscible flooding have been found to select EOR methods 
[23]. The primary mechenisms of CO2 immiscible flooding that contribute to improving oil recovery 
are oil viscosity reduction, oil swelling, interfacial tension reduction, and blowdown. During the 
injection of CO2 into reservoirs, CO2 dissolves into oil, which significantly reduces oil viscosity. 
Furthermore, lab experiments have demonstrated that the higher the oil viscosity, the higher the 
viscosity reduction [24]. Also, oil volume increases about 10-35% based on various reservoir situations 
due to the dissolution of CO2 [24, 25]. Based on current research studies, the main reasons for 
implementing CO2 immiscible flooding worldwide are the immisciblity and situations on site. 
Minimium miscible pressure (MMP) is defined as the lowest pressure where oil and injectants achieve 
miscibility dynamically [26], and CO2 displacement with reservoir pressures less than MMP are 
considered as CO2 immiscible flooding. Extremely high temperatures could lead to immiscibility 
because MMP is positively correlated with temperature [15], which means that the higher the reservoir 
temperature, the higher the MMP, and the harder the development for miscibility. Current situations 
were considered before applying CO2 immiscible displacement. For example, Halfmoon field 
(Wyoming, 1992) had poor response for water flooding, but had CO2 sources on site [27], whereas 
Buracica field (Bahia, 1991) had conducted CO2 injection for 15 years for EOR activities and had CO2 
vented [28]. 
Although some positive results have been reported in prediction models of CO2 flooding [29] and some 
screening criteria have been established [30], prediction models of CO2 immiscible flooding that help  
to determine the applicability and guidelines have been merely studied. Moreover, the accuracy of 
existing applicability studies could be improved since most of the studies yielded at the stage of 
reservoir parameter analysis without considering other valuable production parameters for further 
economic evaluation (e.g., increased oil recovery, CO2 injection efficiency). Most prediction models 
and applicability guidelines only consider the flooding applicability, but barely mention the economic 
applicability or the data quality problems. In fact, CO2 immiscible project data in oil field are scattered 
and are in a variety of formats. Even though Oil and Gas Journal Biannually EOR Surveys where 
reservoir and fluid information have been collected for CO2 immiscible flooding have conducted 
significant efforts, partial important operation parameters and production parameters are still missing 
(e.g., CO2 utilization efficiency, CO2 injection rate, well spacing, etc.). Moreover, severe data quality 
problems have been found, which leads to bias or misleading results [31]. 
In order to make prediction results more applicable for CO2 immiscible flooding, we try to collect and 
organize a high-quality CO2 immiscible data set that will lay the foundation for further analysis, 
reasoning, and decision making. This data set helps operators to better select and determine the most 
suitable CO2 immiscible flooding methods. Instead of only using reservoir parameters, some non-
negligible evaluation parameters are added into our applicability guidelines for better economic 
consideration. 
 

Data Collection and Preparation 
The data set was created by collecting information from variety of data sources including books, DOE 
reports, AAPG database, Oil and Gas Biannually EOR surveys, fields, and SPE publications. All data 
were extracted from original data sources, and saved into the same data collection system. The first 
CO2 immiscible flooding project was found in Ritchie Field (Arkansas, USA) which took place in 
1968 [32]. Motivated by the success of this field, the second CO2 immiscible project in United States 
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was conducted in the nearby Lick Creek Field in 1975, where 7.6 Bscf of CO2 was injected into a 
reservoir with a net thickness of 8.6 ft and an oil gravity of 17 °API. Over the decades, a considerable 
number of CO2 immiscible projects have been undertaken in United States and in China, Turkey, 
Trinidad, Malaysia, Hungary, Argentina, Canada, and Brazil. Aftering collecting all the raw data, 
inconsistent and redundant data have been checked and deleted to keep the data high quality. As a 
result, 41 projects from 35 different oil fields were collected. 
Figure 1 and Figure 2 summarise the number of projects and distributions of the projects that have 
been collected. In Figure 1, the gap between the cumulative number of projects and the number of 
projects in each year represents the total number of projects that has ceased until that specific year. 
From the figure, CO2 immiscible projects increased dramatically in the early 1980s because gas 
injection techniques were considered as a proming, but not well understood EOR method in which 
different gas injectants were applied in various fields. More CO2 immiscible projects and other gas 
injection projects came out at the same time. Several projects were ceased in 1985 and 1986 due to the 
low oil price. After that, the number of projects gradually increased. Figure 2 indicates that United 
States is the leader for using CO2 immiscible technique and occupies 46% of all projects. The pie chart 
shows the distribution of projects in the United States, where most of projects were conducted in states 
with valuable CO2 sources due to the construbtion of CO2 pipelines.  

 

Figure 1. Number of CO2 immiscible applications since 1968                   Figure 2. CO2 immiscible application distribution 

 

Screening Criteria Update 
Fundamental statistics have been utilized to study the suitable ranges for CO2 immiscible projects. 
Boxplots are used to show the minimum, Q1 (25 percentile), median, Q3 (75 percentile), maximum, 
and to detect special cases [31]. Figure 3 depicts the ranges of important reservoir / fluid properties 
and the enhanced oil recovery. From the figure, it is surprise to find that CO2 immiscible displacement 
has been successful applied in shallow reservoirs up to 1400 ft (Yates, USA), and also in deep 
reservoirs up to 8500 ft (Martinville, USA). The reservoir pressure is lower in shallow reservoirs due 
to the overburden pressure. In deep reservoirs, even though the reservoir pressure is higher, the 
temperature is high as well, and since MMP is highly related to oil composition and temperature [15], 
the MMP is hard to achieve. Therefore, miscibility is difficult to obtain for both shallow and deep 
reservoirs with the injection of CO2. The MMP values are greater than 1000 psi and less than 4322 psi, 
but most projects fall into the range of 1470 to 2440 psi. Permeability has a wide range, and 75% of 
projects are less than 465 mD.  From the boxplots of viscosity and oil gravity, most CO2 immiscible 
projects are conducted into the heavy oil reservoir (10-25 °API), especially in Turkey. The main net 
thickness for implementing CO2 immsicble technique ranges from 18 to 141 ft. The thinnest reservoir 
is found in China (Yaoyingtai field), and the thickest reservoir is located in the United States 
(Huntington Beach field). Most reservoir temperatures are from 120 to 152 °F, but the temperature is 
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extremely high in China and Hungary because the location of formation is very high [22, 33, 34].  
 

 
Figure 3. Boxplot of depth, MMP, permeability, oil viscosity, porosity, oil gravity, enhanced oil recovery, net thickness, reservoir 
temperature, and initial oil saturation. The colors of boxplots are mathed with the color of vertical axis where values for red, green, 
blue boxplots are read from red, green, and blue axis, respectively. 

Even though the projects beyond the wiskers are declared as outliers [35], these projects should be 
considered as special cases in oil industry because they are not biased and were successfully 
implemented in the field. From the figure above, special cases were found based on boxplots of MMP, 
permeability, viscosity, and reservoir temperature. Tables 1 and 2 summarise the field names with 
minimum or maximum oberservations and the detailed information for all special cases, respectively.  
 
Table 1. Minimum and maximum field names for each reservoir/fluid parameters. 

Properties 
Fields 

min max 

Porosity Chihuido de la Sierra Negra Paradis, Lick Creek 

Permeability Changqing Ritchie 

Depth Yates Martinville 

Net Thickness Yaoyingtai Huntington Beach 
Reservoir 
Temperature Yates Szank 

Initial Oil Saturation Martinville Tinsley, West Hastings 

MMP Yates Tuha 

Oil Gravity Camurlu Salt Creek 

Oil Viscosity Dulang Ikiztepe 

 
As shown in Table 1, Yates field has the minimum values for depth, reservoir temperature, and MMP. 
The reason for this could be the target formation is a shallow reservoir, which makes the reservoir 
temperature very low, and the MMP value is lower.  
Table 2 depicts that all special cases detected from permeability happened in the United States, while 
special cases illustrated in the MMP boxplot were found in China. Projects in Turkey and Hungary 
have the special cases for oil viscosity and reservoir temperature, respectively. It is not a coincidence 
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that all special cases for each reservoir parameter are from the same country because the reservoir 
characteristics in each country are uniqe. For example, all projects in China are located at deep 
reservoirs with a minimum depth of 5495.5 ft. Projects in China normally have high asphaltene content 
(high molecular weight). This special condition leads to a high reservoir pressur, which results in a 
higher MMP value for immiscibility conditions. Meanwhile, all reservoir/fluid information collected 
from Turkey is from heavy to extremely heavy oil, in which the oil gravity is from 10.8 to 12 °API.  
 
Table 2. Special cases for CO2 immiscible flooding. 

Country Field 
Start 
Date Depth Net 

Thickness Permeability MMP Oil 
Viscosity Temperature References 

Year ft ft mD psi cp °F 
USA Ritchie 1968 2600 9 2750 - 195 126 [32] 
USA Paradis 1987 -  17 2000 1823  - 148 [36, 37] 
USA Lick Creek 1976 2550 8.6 1200 - 160 118 [38, 39] 

China Tuha 2013 5495.5 37 3.4 4322 22.3 113 [40] 
Turkey Bati Raman 1986 4300 213.5 55 - 600 150 [41, 42] 
Turkey Camurlu 1984 4264 197 351 - 705 116 [43] 
Turkey Ikiztepe 1997 4430 57.5 450 - 936 122 [44] 
China Yaoyingtai 2011 6627 18 1.9 3862 1.91 208  

Malyasia Dulang 2002 4579 - 112 3230 0.2 215  
Hungary Szank 1992 - - 255 3626 5.2 235.4 [33] 

 
 
Table 3. Applicability guidelines for CO2 immiscible flooding based on reservoir/fluid, operation, and evaluation parameters. 

Reservoir/fluid Parameters 
 Mean Minimum Median Maximum Standard Deviation 

Porosity, % 22 8 23 33 7 
Permeability, mD 407 1 253 2750 565 

Depth, ft 4293 1400 4365 8500 1824 
Net Thickness, ft 78 5 40 300 81 

Reservoir Temperature, °F 141 82 131 235 37 
Initial Oil Saturation, % 56 30 60 86 18 

Oil Gravity, °API 20 11 17 39 8 
Oil Viscosity, cp 136 0.2 17 936 232 

 
Operation Parameter 

 Mean Minimum Median Maximum Standard Deviation 
CO2 Utlization, Bscf 25 0.1 4 353 82 

 
Evaluation Parameters 

 Mean Minimum Median Maximum Standard Deviation 
Enhanced Production Rate, bbl/d 1653 12 248 9640 2688 
CO2 Injection Efficiency, Mscf/stb 9 0.4 9 20 7 

Oil Recovery Increased, % 8 5 7 13 3 

 
Table 3 depicts the guidelines to provide suitable ranges for CO2 immiscible flooding based on the 
projects collected, which consist of reservoir/fluid parameters, operation parameters, and evaluation 
parameters. For a new field, by having reservoir/fluid information, the applicability of the field for 
implementing CO2 immiscible flooding could be determined based on the guildelines. If the field is a 
good candicate, economic problems will be evaluated. In this case, operation parameters and 
evaluation parameters could help give ideas about the amount of CO2 to be injected, the expectations 
production rate enhancement, CO2 injection effieciency, and oil recovery enhancement. However, 
prediction models are needed to accurately forcast the effects of CO2 injection, which helps to better 
evaluate the applicability of projects. 
 

Prediction Models 

Even though CO2 miscible flooding is a mature technology that is well understood in the oil industry 
and several prediction models have been built using neural networks [45], the study of CO2 immiscible 
flooding is limited. Moreover, the applicability and prediction models are scarce. Based on the 
literature, some applicability guidelines have been studied in steam flooding [46], polymer flooding 
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[31], and gel treatment [47]. However, the application of these guidelines are not accurate since most 
of the studies yielded at the stage of reservoir parameter analysis without considering other valuable 
evaluation parameters that could better represent the economic efficiencies of the operations. For 
example, enhanced oil recovery helps to evaluate whether additional oil could be produced if a CO2 
immiscible technique is applied in the field, and CO2 injection efficiency (Mscf/stb) provides the 
information about how much CO2 needs to be injected for 1 stb of oil production. 

To find the applicability of projects for further economic evaluation, prediction models are established 
for enhanced production rates, CO2 injection efficiency, and enhanced oil recovery by implementing 
linear multiple regression and support vector machine (SVM) techniques. The purpose of using 
multiple regression is to reveal the relationships between independent prediction variables and the 
dependent variable. The SVM method was selected to compare the accuracy with multiple regression 
methods because SVM is an easy and reliable method for small data sets, which avoids the over-
studied problem.  

Since the raw data includes extremely dimensional reservoir/fluid, operation, and evaluation 
parameters, and only reservoir/fluid informations are available for new projects, feature selections are 
needed to eliminate unnecessary information to increase the accuracy. Spearman’s correlation 
coefficient and the Pearson correlation coefficient methods were used to find the relationships between 
all parameters. Table 4 presents Spearman’s and Pearson’s correlation efficiency in reservoir/fluid 
information of area, porosity, permeability, depth, current reservoir pressure, net thickness, reservoir 
temperature, initial oil saturation, oil gravity, and oil viscosity. Results show that the reservoir area has 
redundant information with reservoir pressure and oil gravity. Depth and temperature are positively 
related to MMP because with the increase of depth, the reservoir pressures and temperatures are 
normally higher; therefore, a higher MMP is required for immiscibility. Also, oil gravity is highly 
related to oil viscosity because it is a function of density. After eliminating the redundant information, 
the independent variables were porosity, permeability, depth, thickness, temperature, initial oil 
saturation, and oil gravity, which are used in prediction models. 

Table 4. Spearman's and Pearson's correlation coefficient. Data with a red border indicates that the paired parameters are dependent to 
each other. 

 A Ø K D P h T Soi MMP API 
Porosity, % -0.27        

 -0.43        
Permeability, mD 0.19 0.65         

 -0.14 0.54     Spearman's Rank  
Depth, ft -0.06 -0.29 -0.24    Pearson  

 -0.30 -0.28 -0.20        

Current Reservoir 
Pressure (psi) 0.30 -0.10 0.02 0.71       

 0.89 -0.69 0.07 0.67       

Net thickness, ft -0.05 0.12 0.24 -0.18 -0.41      

 -0.10 0.17 -0.17 -0.23 -0.40      
Reservoir 
Temperature, F 0.03 0.18 0.16 0.63 0.02 0.25     

 -0.43 0.11 0.05 0.75 0.09 0.08     

Initial Oil 
Saturation, % -0.55 0.06 -0.68 -0.28 -0.67 0.67 -0.39    

 -0.07 -0.01 -0.46 -0.20 -0.82 0.39 -0.36    

MMP (psi) -0.03 -0.15 -0.14 0.71 0.71 -0.06 0.82 -0.39   

 -0.38 -0.39 -0.19 0.62 0.84 -0.22 0.52 -0.36   

Oil Gravity, API 0.60 0.16 0.02 -0.28 -0.20 -0.45 -0.15 -0.44 -0.20  

 0.55 0.08 0.02 -0.33 0.04 -0.41 -0.21 -0.57 -0.26  

Oil Viscosity, cp -0.54 0.13 0.40 -0.19 -0.04 0.57 0.07 -0.18 -0.18 -0.98 
 -0.24 -0.18 0.09 0.00 0.00 0.36 -0.01 -0.08 -0.21 -0.68 

Figures 4 to 6 demonstrate the effectiveness of each prediction model. The horizontal axis contains the 
actual values, and the vertical axis represents the predicted values from linear multiple regression and 
support vector machines. Both axes are in the same scale, and thus, data that lays on the diagonal line 
depicts that the value is accurately predicted.  
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Figure 4. Comparison of linear multiple regression and SVM models for enhanced oil production rate. 

 

Figure 5. Comparison of linear multiple regression and SVM models for enhanced oil recovery. 

 
Figure 6. Comparison of linear multiple regression and SVM models for CO2 injection efficiency. 

The root mean square error (RMSE) is calculated based on the prediction models, which is defined as 
the following: 

MSE =
1
𝑛𝑛
��𝑌𝑌𝚤𝚤� − 𝑌𝑌𝑖𝑖�

2
𝑛𝑛

𝑖𝑖=1
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RMSE = √𝑀𝑀𝑀𝑀𝑀𝑀 
where 𝑌𝑌𝚤𝚤�  is the predicted value, and 𝑌𝑌𝑖𝑖 represents the original value. 
Table 5 shows the accuracy of each model along with the number of data points used. Results indicate 
that the prediction model of enhanced oil recovery by implementing multiple regression is precise, 
where the RMSE is 0.00036, which means that this model has almost 100% accuracy. Also, high 
accuracies are found in models of CO2 injection efficiency with both prediction methods. Prediction 
models for enhanced production rates are not as good compared with other models. The reason for this 
could be that the parameter is affected by the real operation conditions (e.g., well shut-in time, pressure, 
etc.), other parameters need to be used for the prediction of enhanced production. 
 
Table 5. Root Mean Squared Error (RMSE) for Prediction Models. 

 No. of Data Points Multiple Regression Support Vector Machine 
Enhanced Oil Recovery 9 0.00036 1.67 
CO2 Injection Efficiency 13 3.1 3.436 
Enhanced Production Rate 20 2069 2032 

 
 

Conclusions 
This paper provides a high-quality data set along with the establishment of applicability guidelines for 
CO2 immiscible projects. Applicabilities are studied not only from the reservoir/fluid parameters, but 
also with the consideration of operation and evaluation parameters for the first time, where prediction 
models are implemented with multiple regression and support vector machine methods. To evaluate 
the applicability of CO2 immiscible flooding for a new field project, reservoir/fluid guidelines were 
used for the first step, then the reservoir/fluid parameters could be fed into prediction models to 
forecast the usage of CO2 injection and the incremental oil recovery. Based on these information, 
economic evaluation could be applied, which helps to make comprehensive decisions about inject CO2 
into the target reservoir. 
Feature selection processing was conducted to avoid duplicate information and to help find the 
independent parameters, which were used in prediction models. The established prediction models 
show that support vector machines could predict the enhanced oil production rate and CO2 injection 
efficiency better than multiple linear regression method, while the multiple linear regression method 
built an excellent model for the prediction of enhanced oil recovery with the RMSE close to 0. 
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