

مركز الملك عبدالله للدر اسات والبحوث البتروليية King Abdullah Petroleum Studies and Research Center

Could China meet CO2 emission reduction targets by CO2-EOR?

Sa'd Shannak

Table of Content

KAPSARC in brief

Research programs and focus areas

What we do

Research Question

Opportunities

Methodology

Preliminary Results

Conclusions

KAPSARC in Brief ...

King Abdullah Petroleum Studies and Research Center (KAPSARC)

- Independent, non-profit, research institution
- Focuses on energy economics, policy, technology, and the environment
- Global and local
- Has financial and administrative independence
- Located in Riyadh

KAPSARC Research Programs and Focus Areas

The Carbon Cycle

- There is a certain amount of carbon circulating through the environment.
- This amounts has been preserved for hundred of million of years;
- We are adding to the mix and change net amounts can be absorbed

Fossil Fuel CO2 emissions : Top emitters

• The top four emitters in 2015 covered 59% of global emissions China (29%), United States (15%), EU28 (10%), India (6%)

Overview of Goal and Plans

- China at COP 21 has promised to:
 - Cut emissions from its coal power plants by 60% by 2020
 - Lower total carbon dioxide emissions per unit of GDP by 60% to 65% from the 2005 level by 2030
 - Start in 2017 its national emission trading system, covering key industry sectors

CCUS in China

- China current 13th Five-year plan (2016–2020) focuses on technology development for CCS R&D with an industry matching fund of around two billion
- CCUS roadmap targets during the Five-Year plan:
 - identify unique low-cost opportunities for CCS demonstration
 - launch at least two large-scale CCS demonstration projects, with an installed capacity to capture at least 2 million tons of CO2 per year.

- Two main challenges :
 - public funding and
 - knowledge about potential CO2 storage sites.

Opportunity

- CO₂ is injected into reservoirs to boost oil recovery and slow declining oil production
- Regulations pertaining EOR are generally clear
- Operators especially in the states have 30-years commercial experience
- CO2 storage can be attained along oil production

Research Question

• What is the potential of CO2-EOR projects in China and its impact on electricity market ?

Objectives

- Analyze the consequence of using CO2 capture for CO2-EOR on the Chinese electricity market.
- Develop an economic model to understand the supply side economics associated with CO2-EOR

Motivations

- China ambition to reduce CO2 emissions
- Existing opportunities to use CO2-EOR for climate change purposes

A framework for analyzing the CO2-EOR suitability

Screening Criteria (sources)

- Considered so far screening criteria
 - Age of facility: Younger than 20 years for power plant
 - Status (operating and constructed)
 - Coal and natural gas
 - Total capacity >100 MW (Power Plant)
 - Distance to sink (max 500 KM)

Sources

• Potential CO2 emission from each source was calculated by multiplying the fuel consumption by corresponding emission factor

	Pounds of CO2 per million Btu	Heat rate (Btu per kWh)	Pounds of CO2 per kWh	Grams of CO2 per kWh
Coal				
Bituminous	205.691	10,080	2.07	938.9
Subbituminous	214.289	10,080	2.16	979.7
Lignite	215.392	10,080	2.17	984
Natural gas	116.999	10,408	1.22	553
Distillate oil (No. 2)	161.29	10,156	1.64	743
Residual oil (No. 6)	173.702	10,156	1.76	798

Sources

- In total the combined database comprises 3275 sources (2361 power plants, 674 cement plants, 16 steel plants, 114 oil refinery plants, 60 biomass plants, and 23 coal to liquid plants)
- The total emission amounts estimated to be 5730 MtonCO2/year (almost 6 Gt/year) and the emission share as follows: 79%, 10%, 9%, 0.4%, 1%, and 1% for power, cement, steel, refinery, biomass and coal to liquid respectively

Screening methodology of Sinks (oil fields)

Scoring criteria	Miscible flood	Immiscible flood	Score
Remaining oil saturation	The intention of this criteria is to excl production life cycle. However, the criter the recovery phase criteria	0 or 2	
Effective mobility	Reservoirs are assumed to require an effective mobility higher than 5	N/A	0, 1 or 2
Viscosity	N/A	Minimum viscosity for Immiscible flood is set at 10 cP, i.e. viscosity must be greater than 10 cP	0, 1 or 2
Pure oil field	Gas/oil ratio (GOR) must be less than 2	0, 1 or 2	
Drive mechanism	Fields with gas injection are unfit for Contract have gas injection. Similarly, water or receive score 2	0, 1 or 2	
Recovery phase score	Remaining oil in place must be higher the economically viable, i.e. current recover was set at 80% in the report which was	0 or 2	
Total	The total score is calculated as the prod	uct of all the above	0, 8, 16 or 64

Screening methodology of Sinks (oilfields)

MMP = -329.558 + (7.727 * MW * 1.005 Temp) - (4.377 * MW)

Where MW is the mole weight of the C5+ component of the reservoir oil estimated as follows:

$$MW = (7864.9 \div API)^{(\frac{1}{10386})}$$

Oil field candidates suitable for CO2-EOR application

• 151 onshore oilfields for CO2-EOR flooding were selected and used in this study. It is worth noting that all offshore fields were excluded from initial screening as the CO2-EOR application can be exceptionally costly.

Optimization model to analyze tradeoffs in developing CO2-EOR projects

• The objective function maximizes the revenues as follows:

 $\max = \sum (Q \times O_p) + (Q_c \times C_p)$

Q is the additional oil recovery due to CO2-EOR in barrels OP is the price of oil barrel in U.S dollars Qc is the quantity of CO2 stored in the formation Cp is the CO2 price

• Constraints:

CO2 demand for each CO2-EOR operation has been met and additional power requirements to capture CO2 is also met

Optimization model to analyze tradeoffs in developing CO2-EOR projects

The model eventually works on maximizing the profit of oil revenues from total costs as shown below:

$$P= (Q \times O_p) + (Q_c \times C_p) - \{ (D_{OS} \times S_s \times T) + (S_s \times C_c) + (U_c \times Q) + (S_s \times E_r \times A_{cc}) + (Q \times TX) \}$$

- DOS is the distance between oil filed and CO2 supply source,
- T is the transport rate,
- CC is the capture cost for different CO2 sources,
- Uc : is the upstream facility upgrade cost, and
- TX is the tax rate payable for the government

CO2-EOR: Storage and Recovery (IEA Scenarios)

Scenario Name	Description	Incremental Recovery, % OOIP	Utilisation, tCO ₂ /bbl
Conventional	Miscible WAG flood with vertical injector and producer wells in a "five spot" or similar pattern. Operational practices that seek to minimize CO ₂ utilization.	6.5	0.3
EOR+	Miscible flooding following current best practices optimized for oil recovery. May also involve some "next" and "second generation" approaches that drive increased recovery and utilization.	13	0.6
Maximum Storage	Miscible flooding where injection is designed and operated with the explicit goal of increasing storage. Could include approached where water is removed from reservoir to increase available pore volume.	13	0.9

Sources to sinks: KAPSARC as a matchmaker

Conclusions

Substantial opportunity for storage & oil recovery through CO2-EOR

31% emission reduction through CO2-EOR can be attained

Additional sources of emission besides power plants could provide an economic opportunity

Need for pilot projects to demonstrate the dual CO2-EOR objectives.

Design of proper policy instruments and incentives need to be in place

Thank You

Sad.Shannak@kapsarc.org

