



# DEMONSTRATION OF SECURE CO<sub>2</sub> GEOLOGICAL STORAGE ASSOCIATED WITH ENHANCED OIL RECOVERY IN THE PCOR PARTNERSHIP REGION

Carbon Management Technology Conference 2017
(CMTC 2017)
Houston, Texas
July 17–20, 2017

Wes Peck
Principal Geologist

Critical Challenges.

**Practical Solutions.** 

PLAINS CO, REDUCTION (PCOR) PARTNERSHIP

- Region includes:
  - Nine states.
  - Four Canadian provinces.
  - Over 3.6 million km<sup>2</sup>.
- Several completed field projects.
- Over 3 million tons of CO<sub>2</sub> stored and monitored in association with CO<sub>2</sub> enhanced oil recovery (EOR).
- More than 120 partners.











#### **PCOR PARTNERSHIP**



#### PCOR PARTNERSHIP OBJECTIVES

- Safely and permanently achieve CO<sub>2</sub> storage on a commercial scale.
- Establish a relationship between the CO<sub>2</sub> EOR process and longterm storage of CO<sub>2</sub>.
- Establish monitoring, verification, and accounting (MVA) methods to effectively monitor CO<sub>2</sub> storage.
- Use commercial oil/gas practices as the backbone of MVA strategies, and augment with additional cost-effective techniques.
- Share lessons learned for the benefit of similar projects across the region.

## CO<sub>2</sub> EOR

- A great near-term storage option:
- Over 40 years of handling and injecting large volumes of CO<sub>2</sub>.
- Much of the infrastructure already in place.
- Storage cost can be offset by income from EOR.

# "Greener" than conventionally produced oil:

- Existing EOR operations are already storing CO<sub>2</sub>.
- Nearly every tonne of CO<sub>2</sub> purchased is eventually stored.





### COMPARING CO<sub>2</sub> EOR TO "REGULAR" OIL











#### **JOURNAL ARTICLE**

International Journal of Greenhouse Gas Control 51 (2016) 369-379



Contents lists available at ScienceDirect

#### International Journal of Greenhouse Gas Control



journal homepage: www.elsevier.com/locate/ijggc

How green is my oil? A detailed look at greenhouse gas accounting for CO2-enhanced oil recovery (CO2-EOR) sites



Nicholas A. Azzolina a,\*, Wesley D. Peckb, John A. Hamlingb, Charles D. Goreckib, Scott C. Ayash b, Thomas E. Doll c, David V. Naklesd, L. Stephen Melzere

- \* The CETER Group, Inc., 1027 Faversham Way, Green Bay, WI 54313, USA
- b Energy & Environmental Research Center, University of North Dakota, 15 North 23rd Street, Stop 9018, Grand Forks, ND 58202-9018, USA
- <sup>c</sup> Energy & Environmental Research Center, University of North Dakota, P.O. Box 929, Evansville, WY 82636-0929, USA
- <sup>d</sup> The CETER Group, Inc., 4952 Oakhurst Avenue, Gibsonia, PA 15044, USA
- e Melzer Consulting, 415 West Wall, Suite 1106, Midland, TX 79701, USA

http://www.sciencedirect.com/science/article/pii/S1750583616302985

The spreadsheet CO<sub>2</sub> EOR life cycle analysis model is available on the PCOR Partnership public Web site!



http://www.undeerc.org/pcor/technicalpublications/CO2-EOR-Life-Cycle-Analysis.aspx

#### **BELL CREEK**

- The Bell Creek oil field is operated by Denbury Onshore LLC.
- CO<sub>2</sub> is sourced from ConocoPhillips' Lost Cabin and ExxonMobil's Shute Creek gasprocessing plants.
- The Energy & Environmental Research Center is studying CO<sub>2</sub> storage associated with commercial CO<sub>2</sub> EOR.











#### FIELD DEVELOPMENT

- **Primary production** and waterflooding produced ~37.5% original oil in place (OOIP).
- Estimated 40–50 million incremental bbl of oil.
- Estimated 12.7 million tonnes of CO<sub>2</sub> stored.













# CO<sub>2</sub> INJECTION

#### As of March 2017

- Oil Produced: ~3.7 million barrels (source: Montana Board of Oil & Gas [MBOG] database)
- CO<sub>2</sub> Stored: ~3.7 million tonnes (source: Denbury)













### **ADAPTIVE MANAGEMENT APPROACH**



#### **MVA**

- 16 techniques
- 1.5 years of preinjection monitoring
- 3+ years of operational monitoring

Demonstrate and validate monitoring techniques and their associated economics to inform viable MVA strategies for commercial-scale carbon capture and storage (CCS).

Building off of the backbone of commercial operations data.













#### MVA FOR MODEL VALIDATION – PULSED-NEUTRON LOGGING



#### **BASELINE 3-D SEISMIC SURVEY**



104-km Baseline Survey (August 2012)



#### SIMULATION-GUIDED MVA

 Simulation was used to predict location and saturation of  $CO_2$ .

• 2-D seismic line used to confirm ability of seismic to detect CO<sub>2</sub> in the reservoir.

Results supported decision to conduct large

3-D survey.

**Predictive Simulation** Results (CO<sub>2</sub> plumes)



#### Seismic Line Overlaying Simulation











#### FIRST REPEAT 3-D SURVEY



| Phase | Start of CO <sub>2</sub> Injection | Estimated Associated CO <sub>2</sub> Storage (Oct 2014), Mt |
|-------|------------------------------------|-------------------------------------------------------------|
| 1     | May 2013                           | 1.04                                                        |
| 2     | Dec 2013                           | .166                                                        |

Calculated using MBOG data.

- 26-km² repeat (October 2014).
- ~1.2 Mt CO<sub>2</sub> stored in monitored area at the time of survey.









# FIRST REPEAT 4-D DIFFERENCE INTERPRETATION (2012–2014)



#### **ADDITIONAL OBSERVATIONS**

An additional 4-D seismic analysis (survey acquired in 2015) shows suspected fluid communication between the Phase 1 and 3 areas...



#### WHAT DOES IT MEAN?

What does the change in amplitude response in 4-D investigations mean?

• The difference is due to comingled effects of changes in pressure and CO<sub>2</sub> saturation, which are difficult to distinguish from one another.

However, initial investigation of pulsed-neutron logs acquired contemporaneously with the 2015 seismic survey indicate an average  $S_{CO2}$  of 3%–4% over an interval of 20 feet is detectable (at a minimum) in

Bell Creek 4-D seismic.



# IMPORTANT LEARNINGS FROM THE 4-D SEISMIC INVESTIGATION

- Permeability barriers (preventing fluid communication and pressure dissipation) have been illuminated where they were masked previously in the baseline seismic.
- Cross-phase fluid communication has been identified.
- CO<sub>2</sub> accumulating updip along the western edge of the N–S permeability barrier is visible.
- CO<sub>2</sub> and pressure plumes associated with injection wells are clearly shown.
- Improved insight into the reservoir's interwell heterogeneity.
  - Yielded important details necessary to adapt static models, enable better history matching, and increase accuracy in predictive simulations.
- Provided actionable information for the engineers operating the field while demonstrating associated CO2 storage incidental to EOR.









#### **CONTACT INFORMATION**

Energy & Environmental Research Center University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, ND 58202-9018

www.undeerc.org

701.777.5195 (phone) 701.777.5181 (fax)

Wes Peck
Principal Geologist
wpeck@undeerc.org







### **THANK YOU!**

Critical Challenges. **Practical Solutions.** 

