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Abstract 

A fault is a potential pathway for fluid leakage, which can contaminate underground water resources. In 

addition, fault leakage can affect hydrocarbon production. This study aims to develop a type-curve-based 

methodology to characterize a fault both laterally and vertically using pressure transient analysis. We 

develop an analytical model to assess the pressure perturbations corresponding to production/injection 

from/into a reservoir with a leaky fault. Displacement of layers during the fault displacement may cause 

alteration of the reservoir properties across the fault. This alteration is accounted for by considering 

different properties on the two sides of the fault. The reservoir is divided into two regions separated by 

the fault, which are in hydraulic communication with one another and with the overlying/underlying 

permeable layers. The governing system of differential equations and corresponding boundary conditions 

are solved using Fourier and Laplace transforms. At early times of the fault leakage, the recorded well 

pressure changes are mostly affected by the fault properties and the effects of resistance from the upper 

zone emerge later. In this model, we neglect the resistance to leakage flow caused by the overlying zone 

to focus on the pressure changes at early times of the fault leakage. We show that these assumptions are 
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valid to arrive at correct fault characteristics. For fault characterization, type curves are presented in terms 

of dimensionless vertical and horizontal conductivities of the fault. A computational optimization method 

is used in combination with type curves to fully characterize the reservoir-fault system. Results show that 

the characterization method is useful to estimate the fault vertical and lateral conductivities. 

 

Keywords: Analytical model, Characterization, Fault leakage, Pressure transient 

 

Introduction 

A fault can cause a discontinuity in formation permeability distorting the fluid flow and may act as a 

conduit to both lateral and vertical fluid flow. Fault zone permeability may be enhanced or reduced 

depending on the forces that cause the displacement of the layers and slip location through the fault plane 

(Sibson, 1977). Faults are generally composed of a core zone surrounded by a damaged zone. The 

permeability of the core zone is commonly low because this is the location of the slip that the original 

rock is ground. Compared to the core zone, the surrounding damaged zone’s permeability may be 

enhanced due to possible fractures (Sibson, 1977; Caine et al., 1996). Analogous to the lateral 

permeability, the vertical permeability of a fault may be enhanced and the fault may be a vertical flow 

conduit (Maslia and Prowell, 1990). As an example, Bense and Person (2006) investigated the sealing and 

conductance behaviors of the Baton Rouge Fault in southern Louisiana and showed that the permeability 

of the fault is enhanced through the fault plane. They also found that the fault permeability is considerably 

low perpendicular to the fault plane. The existence of faults in underground formations can cause inter-

formational fluid migration, particularly affecting water resources (Huntoon and Lundy, 1979). Stoessell 

and Prochaska (2005) showed that brine from deep saline aquifers migrated upward along the Baton 

Rouge Fault by several hundreds of meters.  

   Injection into deep saline aquifers is an industrial method to dispose of unwanted fluids. For instance, 

CO2 storage is a method to cut CO2 atmospheric emissions as a means to mitigate climate change. The 

injected CO2 can leak through a nearby fault to shallower aquifers and contaminate the underground water 

resources (IPCC, 2005). The quality of the underground water resources may change due to CO2 leakage 

through local high-permeability pathways such as permeable faults or abandoned wells (Apps et al., 2010).  

During underground storage of natural gas, migration of injected gas from the target zone through the 

faults can reduce the accessible gas for reproduction and contaminate underground water resources 

(Thomas and Benson, 2005). It is of crucial importance to characterize the potential leakage pathways 

including faults to manage the negative consequences. 

In this paper, we investigate characterization of leaky faults based on the pressure transient analysis (PTA). 
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PTA is an applicable technique to characterize the hydraulic characteristics of the reservoirs based on 

mathematical modeling of fluid flow in porous media. 

   Analytical models are especially useful because of their independence of time and space discretization, 

capability for quick implementation, providing an explicit relationship between the system 

properties/measurements, and less complex models requiring fewer input of data. Several mathematical 

methods were used to present analytical solutions for fluid flow in a system including a fault as a 

discontinuity. Integral transforms (Bixel et al., 1963), Laplace-Fourier transformation (Ambastha et al., 

1989), and Green’s function (Raghavan, 2010) are examples of the mathematical solution methods. 

Analytical approaches to modeling a faulted system are reviewed in the following.  

   Bixel et al. (1963) investigated the transient pressure behavior of a well located near a fault and proposed 

an analytical solution based on the integral transforms. Stewart and Gupta (1984) investigated interference 

testing in a reservoir including a non-sealing fault and introduced drawdown type curves using numerical 

simulation approach. The pressure discontinuity across the fault was shown by Yaxley (1987). He 

obtained an analytical solution for pressure transient behavior of a vertical non-sealing barrier. The 

reservoir properties of two sides of the fault were assumed identical. Ambastha et al. (1989) presented an 

analytical solution with different reservoir properties at two sides of the fault. They demonstrated that the 

results of the interference tests are influenced by the property contrasts of the composite system and the 

location of the observation well. Rahman et al. (2003) presented an analytical solution to the transient 

flow problem of a system of two regions with a finite conductivity fault. The solution accounts for the 

transient flow within the fault. They concluded that the effect of transient flow in the fault can be 

negligible. 

   Modeling of the vertical leakage through the fault has received attention more recently. Shan et al. 

(1995) incorporated the effect of vertical leakage to an upper permeable zone in the suggested analytical 

model. However, they ignored the pressure discontinuity through the fault in the injection layer. Zeidouni 

(2012) presented analytical solutions of two-layer and multi-layer systems, which demonstrated the 

pressure discontinuity through the fault in presence of vertical leakage. Zeidouni (2016) extended the 

multi-layer solution for a leaky fault by fully accounting for the lateral resistance of the fault in all layers. 

Many other works have been done to address fluid leakage from a target zone (Pruess, 2005; Ebigbo et 

al., 2007; Birkholzer et al., 2009; Humez et al., 2011; Zeidouni and Pooladi-Darvish, 2012; Shakiba and 

Hosseini, 2016; Mosaheb and Zeidouni, 2017a, b). 

   The main goal of this study is to present type curves for fault characterization and demonstrate how they 

can be used to determine fault lateral and vertical conductivities. In obtaining the analytical solution, we 

build on an existing analytical solution by Zeidouni (2012). we neglect the resistance to flow caused by 
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the overlying/underlying formations to reduce the number of parameters required to characterize the 

system. A fault usually intersects a sequence of adjacent permeable layers, which can be represented, by 

a single thick zone with high flow capacity (permeability×thickness). The superposition of the numerous 

overlying/underlying layers may show no resistance to vertical flow, especially at early times of leakage. 

The validity of this assumption is investigated as described in the next paragraph. In addition, unlike 

Zeidouni (2012, 2016), the flow capacities in the injection zone are considered different at two sides of 

the fault, allowing for possible layer juxtaposition. 

   In the following, we first present the physical system followed by corresponding analytical model. The 

analytical solution is verified against numerical simulation results. The analytical solution is cast in the 

form of type curves that can be readily applied to characterize lateral and vertical conductivity of the fault. 

Due to the large number of dimensionless groups obtained by the analytical solution, the system cannot 

be fully characterized using the type curves alone. We present a computational optimization method in 

combination with type curves to fully characterize the reservoir-fault system. Our approach is based on 

estimating the dimensionless parameters that describe the hydraulic properties of the fault and the altered 

region on the other side of the fault. Finally, we apply our proposed method to two example problems. 

 

Analytical model 

For the physical system to be modeled, the target zone is separated into two regions (region 1 and region 

2) by a vertical planar fault. Region 1 is on the side of the fault where the active well is located and region 

2 is on the opposite side of the fault (Fig. 1). Because of possible displacement of the layers on the two 

sides of the fault plane, the thickness and reservoir properties of region 2 may be different from those of 

region 1.  The reservoir properties are homogeneous and isotropic at each region. The y-axis is horizontal 

and perpendicular to the x-axis. The active well is assumed to be a line source/sink and is perforated over 

the whole thickness of the reservoir at x=a and y=0 in the target zone. The reservoir is initially saturated 

with a single-phase fluid and the injected fluid is the same as the initial fluid. Both the upper zone and the 

target zone are infinite at both sides of the x and y axes. The fault plane is perpendicular to the x-axis, and 

it is located at x=0. The fault allows flow communications between region 1, region 2, and the upper zone. 

The horizontal and vertical permeabilities of the fault are considered constant. 
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Fig. 1 Schematic representation of the physical model 

   The diffusivity equations for regions 1 and 2 make a system of two linear differential equations. The 

pressure change of the upper zone is negligible because the flow capacity of that zone is assumed to be 

large. Equations (1)-(10) represent diffusivity equations of regions 1 and 2 and the corresponding initial 

and boundary conditions: 

Region 1: 
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where L is half thickness of the above zone. The system of partial differential equations and the 

corresponding initial and boundary conditions (Equations (1)-(10)) are simplified to a system of ordinary 

differential equations using a combination of Laplace and Fourier transforms. Equations (11)-(12) state 

the sequence of applying Laplace and Fourier transforms to time and space domains: 
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where s and ω are Laplace and Fourier transform dummy variables, respectively. Equations (13)-(14) 

provide the final solution of the pressure distribution at region 1 and region 2, respectively in 

dimensionless form (the solution details are given in the Appendix). The Laplace-Fourier domain is shown 

by = on the pressure (Equation (12) ) and dimensionless pressure (Equations (13)-(14) ). 
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where wf, kfv, and kfh are the fault width and vertical and horizontal permeability of the fault, respectively. 

α and αu are dimensionless horizontal and vertical conductivities of the fault and tD is dimensionless time. 

TD and ηD are flow capacity and diffusivity ratios, respectively. The solution must be inverted from the 

Laplace-Fourier domain to time-space domain. Analytical inversion of the solution to a closed-form 
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solution in the time-space domain is impossible. Therefore, numerical Laplace and Fourier inversion 

methods are used to obtain the solution in time-space domain. Stehfest algorithm (Stehfest, 1970) is used 

for Laplace inversion and the Inverse Discrete Fourier Transform (IDFT) is used for Fourier inversion. 

 

Verification of the analytical model 

The analytical solution is verified by comparison of spatial and temporal variation of the pressure with the 

numerical simulation results. In dimensional terms (corresponding to the dimensional values), the width 

of the fault is 0.1 m, the porosity is 0.2, total compressibility factor is 1×10-6 1/kPa, and injection rate is 

0.005 m3/s. The reservoir thickness and permeability of region 1 are 10 m and 10 mD, respectively. Fault 

lateral and vertical permeabilities are 0.01 mD and 5000 mD, respectively. The system specifications are 

given in Table 1. Fig. 2 exhibits the pressure distribution on the line drawn through the well perpendicular 

to the fault plane. The lateral pressure discontinuity is visible across the fault, which shows that the lateral 

permeability of the fault is less than the reservoir permeability. Fig. 2 illustrates that the analytical solution 

is in good agreement with the numerical simulation at both regions 1 and 2. If there is no lateral leakage, 

the pressure in region 2 remains constant at initial pressure. Therefore, the pressure gradient along region 

2 shown in Fig. 2 (from x=-100 to x=0) is a sign of lateral leakage through the fault. 
  

 

Fig. 2 Validation of the spatial pressure distribution in the injection zone after 10 days. 

 

   Fig. 3 illustrates good agreements of pressure and logarithmic pressure derivative (referred to as 

derivative hereafter) between analytical and numerical simulation. The verification of the pressure 

derivative is important because the characterization method to be presented later is based on the pressure 
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derivative curves. 

 

Table 1. Reservoir properties 

Parameter Value Parameter Value 

Effective width of the fault (m) 0.1 Viscosity (cp) 0.5 

Lateral permeability of the fault (mD) 0.01 Injection rate (m3.s-1) 0.005 

Vertical permeability of the fault (mD) 5000 Total compressibility (1/kPa) 10-6 

Target zone thickness (m) 10 fault vertical conductivity , αu 0.12 

Fault-well Distance (m) 100 fault lateral conductivity , α 1 

Permeability of region 1 (mD) 10 Diffusivity ratio , ηD 1 

Permeability of region 2 (mD) 10 Flow capacity ratio , TD 1 

Porosity (fraction) 0.2   

 

 

Fig. 3: Validation of temporal variation of well pressure and (logarithmic) pressure derivative with respect to time using numerical 

simulation 

 

Fault characterization 

In this section, type curves are introduced for characterization of the leaky fault. Type curves are 

generalized and adjusted in terms of dimensionless variables. Based on the analytical solution, the 

reservoir-fault system can be characterized by four groups: Fault lateral and vertical conductivities, 

reservoir flow capacity ratio, and diffusivity ratio. These four groups are represented by dimensionless 

parameters: α, αu, TD, and ηD, respectively. The characterization procedure is presented based on the type 

curves. 
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Type curves 

Fig. 4 illustrates the type curves corresponding to the leaky fault system in terms of fault lateral (α) and 

vertical (αu) conductivities for TD =ηD=1. We refer to type curves of Fig. 4 as the base type curves. The 

type curves are grouped for various values of αu. At each group, α varies from zero to infinity. The negative 

unit slope line of the logarithmic derivative curves in Fig. 4 shows the early time of the vertical leakage. 

The negative unit slope line would occur before appearance of flow resistance from the 

overlying/underlying zone. Using these type curves, hydraulic characteristics of the fault can be estimated 

with the well pressure data before detecting any resistance from the overlying/underlying zones.  

   A well pressure data corresponding to unique values of α and αu would match with a unique type curve. 

In finding the matching type curve, αu is easier to obtain from late time pressure data while parameter α is 

easier to estimate using early time data. Implementing this technique of using the early time and the late 

time data separately can help in resolving the choice of intermediate values of α and αu. In other words, 

for two close values of αu, the two corresponding groups of type curves may be very close to one another 

at late time, but the two curves should deviate from each other at early time curvature making it easy to 

recognize which one belongs to which group. In addition, two curves with too close values of α and 

different values of αu may be close to each other at the early time. Then, their late time deviation can be 

used to determine the correct type curve. In short, there is a unique type curve for each combination of αu 

and α which should be easy to be distinguished from the other curves. In addition, the point when deviation 

from the radial flow (the zero-slope derivative line prior to reaching the fault) would commence are useful 

to find the best matching type curve. 

   

Fig. 4: Type curves of the leaky fault system considering TD =1 and ηD =1 
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   In order to use these type curves, the well pressure data should be plotted versus time in the same scale 

as the type curves on a transparent plot. The resulting plot should be next moved horizontally and vertically 

(without rotation) to find the best match with the type curves to estimate α and αu. In addition to α and αu, 

region 1 permeability and fault-well distance can also be evaluated based on the radial flow prior to 

reaching the fault. By selecting an arbitrary match point, we get (PD)M, (ΔP)M, (t)M, and (tD)M of that match 

point to calculate region 1 permeability (k) and fault-well distance (a) based on Equations (19) and (20).  
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   One observation from these type curves is that 2 to 3 log-cycles of data may be required for identification 

of the fault characteristics. This implies that if the fault is felt after 1 hr test, 10 to 100 hrs of test may be 

required to enable characterizing of the fault. The type curves can be extended to determine TD and ηD as 

well. Fig. 5 illustrates the effect of TD and ηD on the pressure and pressure derivative for a fixed value of 

α (=0.1). The effect of TD and ηD is most visible at the lowest values of αu. Similar patterns are achieved 

for different values of α.  

 

Fig. 5 Effect of TD and ηD on the type curves 

   Fig. 5 shows that by increasing αu, the sensitivity of the pressure derivative curve to the parameters TD 
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and ηD will decrease. In the following, we introduce a procedure to estimate the dimensionless parameters. 

First, initial values of α and αu are estimated by the base type curves. Next, an optimization method is 

applied to find the accurate values of the dimensionless parameters using the initial values obtained from 

type curve analysis. We use the MATLAB built-in optimization tool given by the fmincon optimization 

function (Matlab, 2015). This function is based on a sequential quadratic programming, which is a 

gradient-based algorithm. Here, fmincon optimization is applied to minimize the square of the difference 

between well pressure data and the mathematical solution by changing the four dimensionless parameters. 

 

Characterization procedure 

In characterization procedure, first, we estimate the initial values of α and αu from the type curves. Next, 

we calculate the values of permeability and fault-well distances using Equations (19) and (20). In the 

optimization process, we use the pressure data to modify the estimated initial value of α and αu. Next, we 

fix TD and ηD. This step is done by the late time data because TD and ηD have a negligible effect on the 

early time data. The initial values of TD and ηD can be considered equal to one. This sequential procedure 

improves the optimization process compared to optimizing all four dimensionless parameters 

simultaneously using the whole pressure data. The characterization procedure is summarized in Fig. 6. 

 

 
 

Fig. 6 Characterization procedure of the leaky fault system 
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Results and discussion 

In this part, two examples are presented to estimate fault characteristics by the type-curve method using 

the procedure described in the previous section. 

 

Example 1: No alteration of reservoir properties across the fault 

In this example, we analyze the well pressure data of an injection well near a fault. The permeability, 

porosity, total compressibility, and thickness of the target zone at both sides of the fault are respectively 

100 mD, 0.1, 10-6 1/kPa, and 10 m. The flow capacity of the upper zone is large enough compared to the 

injection zone. The injection rate is 0.005 m3.s-1 and fluid viscosity is 0.5 cp. Fig. 7 shows the synthetic 

well pressure data and pressure derivative of the first example in which α and αu are considered 1 and 0.3, 

respectively.  These values correspond to 62 D and 0.1 mD for vertical and horizontal permeabilities of 

the fault considering a 0.1-m wide fault. Fluid leakage through the fault can be inferred from the derivative 

curve. If the fault is sealing, the pressure derivative becomes zero-slope after departing from the zero-

slope corresponding to initial radial flow (Fig. 8). The late time horizontal line in Fig. 8 exhibits the 

pressure response of a sealing fault in which α and αu are equal to zero. 

   The pressure data and the derivative are required on a plot with the same scale as the type curves for 

type-curve matching. Fig. 9 shows the type curve that best agrees with the pressure data. Corresponding 

values of α and αu are estimated for the fault. The estimated values of α and αu are 1 and 0.3, which are 

the true values used in generating our synthetic data. By selecting an arbitrary match point and using 

equations (19) and (20), the permeability of region 1 and the fault-well distance can be calculated as 

below:  

 

( ) 0.08D MP   , ( ) 199  MP kPa   , ( ) 0.07D Mt   , ( ) 1000  Mt s   (21) 
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These values are in close agreement with the correct values (k=100 mD, a=100 m). 

  
Fig. 7 Pressure and pressure derivative for example 1 

    
Fig. 8 Pressure and derivative response for a sealing fault, considering α = αu = 0. 
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Fig. 9 Estimating α and αu with the type curves for example 1 

 

Example 2: Alteration of reservoir properties across the fault 

Fig. 10 shows the synthetic pressure data of an injection well near a fault in which α, αu, TD, and ηD are 

considered 0.02, 0.5, 0.1, and 0.1 respectively. The flow capacity of the upper zone is large in proportion 

to the injection zone. In this example, we characterize the leaky fault while the reservoir properties of 

region 2 may not be identical to those of region 1. The injection rate is 0.005 m3.s-1, the viscosity is 0.5 

cp, the porosity is 0.1, total compressibility is 10-6 1/kPa, and reservoir thickness is 20 m. First, we use 

the base type curves to find the initial values for α and αu. In this case, the pressure data curve may not 

accurately match with the type curves but we try to find the best match. The best match of the pressure 

data with the type curves is illustrated in Fig. 11. The estimated initial values of α and αu are 0.2 and 0.03, 

respectively. 

   When TD≠1 and/or ηD≠1, the effects of TD and ηD on the pressure derivative curve appear after the arrival 

of the pressure pulse to the fault. The variations of TD and ηD will not affect the early time pressure data. 

Thus, similar to example 1, we can select an arbitrary match point to estimate the fault-well distance and 

permeability of region 1 (Equations (24)-(26)). 

( ) 0.098D MP   ,  ( ) 1D Mt   ,   ( ) 1D Mt   , ( ) 10022  sMt    (24) 
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= 49.4 mDD
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  100.1  mD M
a t t    (26) 

 

Fig. 10 Pressure and derivative data for example 2 

 

 

Fig. 11 Estimation of α and αu with the base type curves for example 2 

 

   Next, the optimization method is used to find accurate values of the dimensionless parameters. We set 

the initial values of TD and ηD equal to one. The calculated permeability and fault-well distance (k and a) 
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are used to convert the well pressure data to dimensionless numbers. We apply optimization function to 

find the best match between the dimensionless pressure data and the analytical solution by modifying the 

four dimensionless parameters. Using the optimization method, the estimated values of the dimensionless 

parameters are α=0.5, αu=0.02, TD=0.1 and ηD=0.29. The estimated values of fault conductivities (α and 

αu) are true values corresponding to synthetic data. Generally, effects of fault conductivities on the 

pressure derivative are more than effects of diffusivity and flow capacity ratios in this model. Because the 

model is focused on the early times of fault leakage. 

 

Conclusions 

In this study, we preseted a type-curve based method to characterize a vertically and laterally leaking fault 

using pressure data. In order to develop the type curves, we developed an analytical solution. The reservoir 

properties on the two sides of the fault are considered non-identical. The analytical solution was verified 

against the numerical simulation results. In this model, we neglect the resistance to flow by 

overlying/underlying permeable layers connected to the reservoir by the fault. We investigated the validity 

of this assumption by assigning different flow capacities to the overlying/underlying zones. This 

assumption is valid before reaching to the effects of the adjacent zone. The model was cast in the form of 

type curves to characterize lateral and vertical leakage through the fault. We used the optimization method 

in combination with the type curves to identify α, αu, TD, and ηD. The type curves were used to find the 

initial values of unknown parameters. Applying the optimization method, very accurate values of αu and 

α were estimated by modifying the initial values. As αu increased, the sensitivity of the pressure response 

to TD and ηD was reduced. However, for low values of αu, the well pressure data were considerably 

sensitive to TD and ηD. The sensitivity of this range of pressure data on flow capacity and diffusivity ratios 

(TD and ηD) is less than that to the fault vertical and lateral conductivities. This work shows that the 

pressure data prior to reaching the flow resistance of the overlying/underlying zone can be enough to 

estimate hydraulic characteristics of the leaky fault. 
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Appendix: Mathematical solution 

We present the system of differential equations in dimensionless form for generality and convenience. 

The system of differential equations of regions l and 2 and the corresponding boundary conditions 

(Equations (1)-(10)) are converted to dimensionless form using Equations (15)-(17). 

 

Region 1: 

2 2

1 1 1

2 2
( 1) ( )D D D

D D

D D D

P P P
x y

x y t
 

  
   

  
  (A1) 

1( , ,0) 0D D DP x y    (A2) 

1( , ,0) 0D DP x     (A3) 

1( , , ) 0D D DP y t    (A4) 

1
1 2 1

(0, , )
( (0, , ) (0, , )) ( (0, , ))D D D

D D D D D D u D D D

D

P y t
P y t P y t P y t

x
 


  


  (A5) 

 

Region 2: 

2 2

2 2 2

2 2

1D D D

D D D D

P P P

x y t

  
 

  
  (A6) 

2 ( , ,0) 0D D DP x y    (A7) 

2 ( , , ) 0D D DP x t   (A8) 

2 ( , , ) 0D D DP y t    (A9) 

2
2 1 2

(0, , )
( (0, , )) ( (0, , ) (0, , ))D

D u D D D

D

P y t
T P y t P y t P y t

x
 


  


  (A10) 

 

   To solve the system of differential equations, the method of Laplace and Fourier transforms is used. 

Applying the transforms, the system of partial differential equations in time-space domain is converted 

into a system of ordinary differential equations in Laplace-Fourier domain that can be solved. Then, the 

solutions should be converted back to the time-space domain using Laplace-Fourier inverse transforms. 

The Laplace transform of the function PD is defined as below: 

0
( , , ) [ ( , , )] ( , , )


  L Dst

D D D D D D D D D D D DP x y s P x y t P x y t e dt   (A11) 

 

where s is the Laplace transform variable. First, the Laplace transform is applied into the time domain. 
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Region 1: 

2 2

1 1
12 2

1
( 1) ( )D D

D D D

D D

P P
x y sP

x y s
 

 
   

 
  (A12) 

1( , , ) 0D DP x s    (A13) 

1( , , ) 0D DP y s    (A14) 

1
1 2 1

(0, , )
( (0, , ) (0, , )) ( (0, , ))D D

D D D D u D D

D

P y s
P y s P y s P y s

x
 


  


  (A15) 

 

Region 2: 

2 2

2 2
22 2

D D
D

D D D

P P s
P

x y 

 
 

 
  (A16) 

2 ( , , ) 0D DP x s    (A17) 

2 ( , , ) 0D DP y s    (A18) 

2
2 1 2

(0, , )
( (0, , )) ( (0, , ) (0, , ))D D

D u D D D D D D

D

P y s
T P y s P y s P y s

x
 


  


  (A19) 

 

The Fourier transform of function DP  is defined as below: 

. .( , , ) [ ( , , )] ( , , ) i t

D D D D D D D DP x s P x y s P x y s e dt



  F   (A20) 

 

where ω is the Fourier parameter. Second, the Fourier transform is applied into the space domain (yD) and 

the ordinary system of differential equations and corresponding boundary conditions in the Laplace-

Fourier domain is obtained: 

Region 1: 

2
21

1 12

1
( 1)D

D D

D

d P
A P x

dx s
      (A21) 

1( ) 0DP     (A22) 

1
1 2 1

(0)
( (0) (0)) ( (0))D

D D u D

D

P
P P P

x
 


  


  (A23) 
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Region 2: 

2
22

2 22
0D

D

D

d P
A P

dx
    (A24) 

2 ( ) 0DP     (A25) 

2
2 1 2

(0)
( (0)) ( (0) (0))D

D u D D D

D

P
T P P P

x
 


  


  (A26) 

 

where A1=ω2+s and A2=ω2+s/ηD. The solution in Laplace-Fourier domain is as below. 

 

Region 1: 

 1 1
1

1 1

1

1

2
D D

A x A x

DP e C e
sA

      (A27) 

0 1 1 1 0 1 2 0 1( ) ( )uC A C A C C C C C         (A28) 

 

Region 2: 

2

2 2
DA x

DP C e  (A29) 

2 2 2 0 1 2( )D uT C A C C C C       (A30) 

 

where 1

0 1(1 (2 )) AC sA e . C1 and C2 are unknown constants, which must be calculated by combining the 

equations (A28) and (A30). The solutions for dimensionless pressure of regions 1 and 2 in Laplace-Fourier 

domain are: 

1 1

2
1 (1 )1 1 1 2 2 2

1 2

1 1 1 1 2 2 2

21

2 2
D D

A x A xu u u D D D u
D

u u u D D D u

A A A A T A T A T
P e e

sA A A A A T A T A T

     

     

         
  

      
 (A31) 

1 2( )

2 2

1 1 1 2 2 2

1

2
DA A x

D

u u u D D D u

P e
s A A A A T A T A T



     

  
  

      
 (A32) 
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