

Carbon Management at Shenhua RD&D initiatives and CCUS demonstrations

Anthony Ku July 20, 2017

Disclaimer

This presentation was prepared for the 2017 Carbon Management Technologies Conference. The Presentation contains forward-looking statements within the meaning of the Securities Act and the Securities Exchange Act of 1934, as amended. These forward-looking statements may include, without limitation, statements concerning the operating plans and objectives of the Company, statements concerning the actions of governmental and regulatory authorities, competition to the Company, the market for the services of the kind to be provided by the Company, commercial arrangements the Company intends to enter into or projections of income and expenses of the Company. A number of factors that could cause actual results to differ materially from the assumptions, results, actions or outcomes anticipated in the forward-looking statements contained in this Presentation. Consequently, there can be no assurance that any results, actions or outcomes anticipated in any such forward-looking statement will be realized.

Who is Shenhua?

State-owned enterprise

- Founded 1995 ... Fortune 200 last 7 years
- Vertically integrated energy company ...
 - ... mining, power, chemicals, transport
 - ... #1 in coal in China (10+% share)
 - ... Top 5 in power (12+% share, 83 GW total)

□ Clean energy roadmap ... "1245" strategy

- Ultra low emissions (ULE) technologies
- Water and reuse treatment
- Green mining
- Renewables (6+ GW wind)

Shenhua assets map

「「「「「」」」 「Tavan Tolgoi」 呼倫貝爾 Hulunbeier

內原古自治區

3

同業

其力端互加

商商站面 Qigihar

的角度

用銀江

-

市然真正

陕西省

SHANOG

Source: Shenhua annual report, 2016

調査

nn 😳

© 2017 National Institute of Clean and low-carbon Energy

江西

0.

源土 Hubei

E

大衆語 Dalawa

Who is NICE?

Background

- National Institute of Clean and low-carbon Energy
- Founded in 2009 ... corporate R&D lab for Shenhua group
- Mission ... to become a world class R&D institute supporting Shenhua's transition to clean and low carbon energy supplier
- 490+ researchers
- Sites: Beijing, China; Mountain View, CA; Schwäbisch Hall, Germany

Mission driven R&D ... platforms

Advanced Technologies

- emissions mitigation
- engineering innovation
- strategic growth

CO₂ management landscape in China

Policy context

Emissions trading markets – Phase 1

2013			2014			Ν
1 2345		5		6	7	
1. Shenzhen 2 July 18, 2013 1 30 MM tCO2/yr 3 635 companies 2		I. Guangdong Dec 19, 2013 I 50 MM tCO ₂ /yr 202 companies		6. Hubei Apr 4, 2014 120 MM tC 138 compa	O ₂ /yr nies	970 MM tCO ₂ /yr
	 2. Shanghai Nov 26, 2013 150 MM tCO₂/yr 200 companies 	5. Tiar Dec 26 150 MI 114 cor	njin , 2013 M tCO ₂ /yr mpanies		7. Chor Jun 19, 2 100 MN 242 com	ngqing 2014 I tCO ₂ /yr npanies
Power O&G Steel Cement Chemical	3. Beijing Nov 28, 2013 70 MM tCO ₂ /y 490 companie	r S	 Phase 2: Phase 3: Phase 4:	National m National m (2020-203 Internation	arket (20 arket wit 80) al linkage	17-2020) h reductions es (2030+)

X. Zhao et al. Ren Sust Energy Rev. 59, 1229 (2016)

© 2017 National Institute of Clean and low-carbon Energy

Emissions trading markets – Historical activity

Shenzhen (~ 30 RMB, 2017)

Shanghai (~ 40 RMB, 2017)

Beijing (~ 50 RMB, 2017)

By end of October 2014,

- Cumulative trading volume: 13.8 MM ton 6M t in Hubei; 2M t in Beijing
 - >1 M t in Shanghai, Guangdong, Tianjin
- Total turnover value = 500 MM RMB

However, lessons remain to be learned about:

- Allocations ... legacy vs market
- Market operations ... liquidity, information

X. Zhao et al. Ren Sust Energy Rev. 59, 1229 (2016)

http://www.tanpaifang.com/tanhangqing/

© 2017 National Institute of Clean and low-carbon Energy

Shenhua CO₂ management strategy

Shenhua CO₂ sources

Shenhua CO₂ strategy – Key elements

1. Standards, controls and trading

- Assessment, monitoring, and controls
- Participate in carbon trading markets

2. Efficiency projects on established plant/capex

- Close excess capacity
- Upgrade systems

3. Renewables

- Currently 6+ GW wind

4. Advanced R&D and international cooperation

Shenhua Group

Group-wide CO₂ reduction efforts (2016-2020)

- Closure of excess capacity (mines, low efficiency power generation, coking)
- Energy efficiency (boilers, machinery, mining)
- Renewables generation (wind, solar)

Shenhua CO₂ footprint & reductions

Shenhua CO₂ footprint & reductions

© 2017 National Institute of Clean and low-carbon Energy

Improve fleet-level efficiency.

- Technology insertion ... boosting efficiency at individual sites.
- System optimization ... marginal savings from fleet evolution.

Accelerate affordable industrial-scale CCUS.

- Lower cost capture ... establish cost benefits and operability of Gen 2 tech under China-specific operating conditions
- Storage and utilization ... how do we ramp up to 100+ MM tpa scale?

Demonstrate concepts for zero-emissions power.

- "Transformational" power cycles ... design, enablers, pilots
- Renewables integration with fossil ... practical options in China

Accelerating affordable CCUS at scale

The aspirational goal of the NICE CCUS RD&D effort is to provide Shenhua with the technical capacity to affordably implement CCUS at 100+MM tpa scale by 2030.

RD&D focus areas

- 1. Enabling capabilities
 - Technoeconomic assessment tools
 - Carbon market dynamics
- 2. CO₂ capture
 - Power generation (existing)
 - Power generation (new builds)
 - Coal-to-chemicals (precombustion)
- 3. CO₂ disposition
 - Geological storage
 - Value-added utilization

NICE RD&D 1. Enabling capabilities

Snapshot: Technoeconomic analysis

China CO₂ capture costs ~ \$34/ton

Reference	Year	RMB/ton	\$/ton
AE 87 3347	2010	162	25*
EP 4 1869	2011	203	31.2*
EP 4 1878	2011	206	31.7*
JCP 112 4123	2016	220	33.8*
E 58 117	2013	247**	39.44
JCP 139 612	2016	286*	44

* Assumes RMB:USD = 6.5 ** Assumes RMB:USD = 6.25 US CO₂ capture costs ~ \$58/ton

Reference	Year	\$/ton
DOE Bituminous Baseline Report	2011	58.2

Why is there a difference? What are the key drivers?

Baseline plant – Key assumptions

iC

Costs of electricity – US and China baselines

iC

Cost walk

Preliminary results

Drivers for CO₂ capture cost differences

Key drivers

- 1. Capacity factor
- 2. Plant size
- 3. Coal consumption
- 4. Capex
- 5. Coal price
- 6. Labor
- 7. Fixed opex
- 8. Variable opex
- 9. Other economic assumptions

US

CN

Baseline China plant has been defined

Internal methodology to convert "US costs" into "China costs" Core design and economic assumptions Performance and costing ... sensitivity analysis in progress

Next steps and collaboration opportunities

Validate internal results and publish a "China coal power base case" Track and understand impacts of carbon trading markets Engage global community on cost impacts of China-specific factors

NICE RD&D 2. CO₂ capture

Snapshot: Gen 2 capture tech for power generation

Gen 1 technology (amine solvents) Cost maturation

Gen 2 technology (alternate solvents, membranes, sorbents) Scale-up and validation

> Translation of ex-CN tech to CN environment

Technology options

Operational differences – China vs US

1. Capacity factor/load following

- Turndown can cause CO₂ concentration fluctuations
- Effect of ramping on performance and economics

2. Capture rate

- NG equivalence ... 60-65% capture
- Fleet-level trade-offs for partial capture

3. Other

- Emissions controls ... sensitivity to contaminants and dynamics
- CO₂ product specs ... pressure, purity, off-take rates

Gen 2 technology – Screening criteria

Slipstream test facility

Jiangyou site (Sichuan province)

- 4 subcritical boiler units:
 - 2 x 300 + 2 x 330 MW
- Emissions controls: SCR, FGD
- Capture slipstream
 - 0.1 MW_e (400 to 500 kg/hr)
 - Modeled after NCCC bench-scale testing platform
- Design and construction in progress ...
 Qualification testing starts 4Q2017

Thanks to NCCC for helping us get to this point quickly.

Summary and Next steps ... Capture

Slipstream evaluation of Gen 2 technologies in progress

Technology screening criteria:

- Economic potential (<60% increase in COE)
- Addressable knowledge gaps

Next steps and collaboration opportunities

- Support maturation of Gen 1 and Gen 2 capture technologies
 - Focus on operability and economic entitlement
 - Open to new technology options

Develop technical and commercial roadmap for implementation within Shenhua power generation and coal-to-chemicals business units

NICE RD&D 3. CO₂ utilization and sequestration

Snapshot: Geological storage demo at Ordos

Shenhua Ordos demonstration project

- China's first geological storage project
- Active from 2011-2014
- Low permeability saline aquifer
- Total CO₂ injected: 300,000 MT
- NICE role: Monitoring

niC

CO₂ source

nie

Coal to liquids (CTL) initiative

- Significant national initiative in 1990s-2000s
- Reduces energy security risks around oil imports
- Utilization of low S, low ash coal reserves

Ordos DCL project

- Direct coal liquefaction ... high T hydrogenation
- Phase 1 Commercial operation 2011
 ... 1 MM tpa liquids product (3.4 MM tpa coal)
- CO₂ footprint
 - \ldots 3.6 MM tpa from coal to $\rm H_2$
 - ... 0.7 MM tpa from power and steam
- CO₂ for storage demonstration
 - ... DCL capture ... 80% purity
 - ... purification ... 95% purity

Ordos project ... Process map & current status

Long-term monitoring responsibility transferred to NICE

- Plume modeling
- Risk-based approaches

Closing out Ordos project

Continuing monitoring for long-term safety and CO₂ assurance Review lessons learned to inform future sequestration projects Transition focus to EOR partnerships and other utilization opportunities

Next steps and collaboration opportunities

Engage international community to stay current on storage developments Ramp up efforts in utilization (EOR, others)

Globally, much progress is being made towards industrial CCS.

NICE is pursuing RD&D to assemble the technical capacity for Shenhua to do affordable CCS at 100+MM tpa scale by 2030.

We are open to learning from others, sharing our lessons learned, and partnering to develop technologies suited to the China landscape.