NET Power

Truly Clean, Cheaper Energy

July 19, 2017

Taking Stock

Where We Are

It's Getting Hotter

4

Greenhouse gases are part of the problem

... and greenhouse gases are a function of

- *fugitive* carbon
- from our energy sources (among other places!)

... which, in turn, are a function of

- GDP
- Population

What to do?

The future as seen by some smart people

Renewables are promising, but cannot do it alone

Why can't renewables do it?

COST OF ELECTRICITY WITH DIFFERENT LOW-CARBON TECHNOLOGY MIXES

System-wide Cost of Electricity (\$/MWh)

(weighted average of data from Germany, CA and WI)

Nuclear is a great, but it also cannot do it alone

As a result, fossil fuels will be the core of the future

And, if we don't fix fugitive carbon, we don't solve the problem

We Have a Strong Team

And We Are Making Things Happen

Boundary Dam Project

ExxonMobil Shute Creek/LaBarge Project

Chevron Gorgon Project

The information contained in this material is confidential and contains intellectual property of 8 Rivers Capital, LLC and its affiliates.

S STO

Great Plains Synfuels Project

And we know what to do with the CO₂

CO2 Use: EOR, Huge Opportunity

Global perspective: 1.1B tons of CO₂ required to recover 470 billion barrels of oil

CO₂ Use: Sequestration, 2,600 billion metric tons¹

- The federal 45Q tax credit puts CCS on a level playing field
- 21 states have incentives and policies in place the provide value or preferential treatment to NET Power for capturing CO₂

1. DOE & NETL Carbon Storage Atlas (Atlas V), 5th edition, 2015

CO2 Use: Conversion to value added products

Waste Carbon as a Resource for Product Synthesis

Wow

What NET Power is Doing

NET Power

Electricity from natural gas

- Costs competitive with existing natural gas power plants
- Captures or eliminates substantially all of the carbon and non-carbon atmospheric emissions without any additional cost
- Water not required (at a small reduction in efficiency)
- Can use inexpensive fuels such as acid gas, sour gas, associated gas, and produced gas
- Ø Also produces important gases, including N₂, O₂ and Ar

The supercritical CO₂ Allam Cycle is simple

✓ Historically, CO₂ capture has been expensive, whether using air to combust or oxy-combustion

Air combustion

$$\underbrace{\frac{8N_2 + 2O_2}{air} + CH_4}_{air} \rightarrow \underbrace{\frac{8N_2 + CO_2}{expensive to}}_{separate} + 2H_2C$$

- Oxy-combustion
 - $20_2 \\ expensive \\ to produce$ + $CH_4 \rightarrow CO_2 + 2H_2O$

The Allam Cycle makes oxycombustion economic by:

- Relying on a more efficient core power cycle
- Recycling heat within the system to reduce O₂ and CH₄ consumption, and associated costs of the ASU

NET Power is about more than electricity

NET Power partners with renewables to avoid diminishing returns

Total global addressable market: \$749 billion

NET Power's effective heat rate (LHV)

Note: Heat rates are net of additional ASU parasitics for capture of specialty gases. Assumes gas costs are offset at \$4.44/MMBtu LHV

NET Power is clean, low cost and efficient

NET Power and Combined Cycle: Efficiency at ISO Conditions					
	HHV		LHV		
Energy Components	F-Class US NGCC Plant (0% CC)*	NET Power NG Plant (100% CC)	F-Class US NGCC Plant (0% CC)*	NET Power NG Plant (100% CC)	
Gross Turbine Output	51.06% (Compressors	74.65%	58.7% (Compressors	82.7%	
CO ₂ Compressor Power	mechanically coupled)	-10.47%	mechanically coupled)	-11.6%	
Plant Parasitic Auxiliary Power	-0.86%	-11.01%	-1.2%	-12.2%	
Net Efficiency	50.20%	53.17%	57.5%	58.9%	

*Performance data from NETL Cost and Performance Baseline Report, 2013.

Parasitic Load Provides					
Opportunity for					
Efficiency Improvement					
ASU	91.8%				
NG	8.2%				
Compressor					

1. LCOE calculated using EPRI methodology

2. Assumes natural gas at \$2.85/MMBTU and coal at \$1.73/MMBTU

3. Every move of \$1 in natural gas moves LCOE \$6

4. Cost ranges represent range of data combined from: EIA (2013), Parsons Brinkerhoff (2013); Black & Veatch (2012); DOE NETL (2012)

NET Power demonstration plant timeline

Toshiba turbine on site

- 50MWth turbine is complete.
- Actually sized as 200
 MWth, but uses only
 1 combustor vs 4
- 500 MWth commercial turbine uses same technology

NET Power's demonstration plant is 95% complete

50 MWth Demonstration Plant

Commercial combustor complete with demonstration

Demonstration (50 MWth)

Commercial (500 MWth) = 10 x demonstration (50 MWth)

Image of Toshiba's NET Power combustor.

Image meant to be a visual aid for relative combustor-turbine configuration, not actual NET Power combustor configuration.

NET Power 1st commercial plant timeline

Together we will solve this

Appendix

Allam Cycle Natural Gas Platform

The NET Power Advantage - The Allam Cycle

NET Power has higher energy density than big projects

Steel

✓ Compared to IGCC, bulks are small driver of costs:

Feet per MW 400 200 0

1,400

1,200

1,000

800

600

Piping

Edwardsport Kemper TECO Polk NET Power

Globally, NET Power CO₂ will change the oil stack

Sources and Estimated Breakeven of Oil Needed to Meet 2020 Demand

- Shutdown of tight oil/high cost plays highlights EOR as a low-cost opportunity for growth from existing fields
- NET Power further improves the economics of EOR and will significantly expand CO₂ supplies for producers
- NET Power solves the challenge of carbon capture adoption by achieving lower cost and higher efficiency than current noncarbon capture power generation options

NETPOWER

Source: Rystad Energy (2014); 8 Rivers Capital (2015)

Market opportunity for NET Power turbine sales

NUMBER OF NET POWER TURBINES NEEDED TO SATISFY DIFFERENT MARKETS 11292 10000 NET Power equivalent units (log scale) 3816 3105 2908 1856 1289 1294 957 761 1000 585 450 447417 452 394 261 314 302 221 208 158 182 100 58 10 1 US Middle Africa South Am. Canada Europe Asia Russia east

Series Power Demand to 2040 (IEA) (total units 4,108)

EOR Demand (Kuuskraa) (total unit 6,018)

ECBMR Demand (Godec, Dipietro) (total units 21,601)

Trend over 1990 - 2016 1990 - 2016 📃 Benchmark countries 50 40 30 8 20 10 0 2010 2012 2014 2016 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008

Latin America Asia

% in electricity production (2016)

Solar

Europe

Pacific

CIS

Africa

North America

Middle-East

Breakdown by energy (2016)

Source: https://yearbook.enerdata.net/renewables/wind-solar-share-electricity-production.html July 19, 2017

Trend over 1990 - 2016

Power Mix - G20 (2000 and 2016)

Even with all the huge news on renewable growth fossil still dominates and has taken a larger share of the mix!

NET Power

+1 (919) 667-1800

www.NETPower.com / www.8Rivers.com