

Low-temperature synthesis of portlandite for carbon dioxide mineralization

Presented by: Erika Callagon La Plante, Ph.D. Civil and Environmental Engineering, UCLA

Collaborators: Sara Castaño, Sho Shimoda, Laurent Pilon, Narayanan Neithalath, Gaurav Sant

Developed for: Carbon Management Technology Conference July 15–18, 2019 in Houston, TX

Carbon dioxide mineralization in concrete

- Concrete: 30 billion tons/year,* 4.1 billion tons of ordinary portland cement (OPC)**
- \succ ~0.9 t CO₂ per t OPC⁺
- Energy input for processing at high temperature (~1600 +C) and CO₂ emission from calcination

 $CaCO_3 \rightarrow CaO + CO_2$

*Cement Sustainability Initiative, 2009; **USGS, 2018; †Gartner 2004

CO_2 mineralization to induce cementation

- \succ Reaction of gaseous CO₂ with mineral phases to form solid products containing CO₂
- \succ Ca- or Mg-containing minerals
- Stable Ca and Mg carbonates which bind aggregates
- \succ Dissolution-precipitation

 $\begin{array}{l} \text{Ca(OH)}_2 + \text{CO}_2 \rightarrow \text{CaCO}_3 + \text{H}_2 \text{O} \\ \text{CaSiO}_3 + \text{CO}_2 \rightarrow \text{CaCO}_3 + \text{SiO}_2 \end{array}$

Calcium hydroxide (portlandite)

- ➢ Hydrated lime is an efficient material for CO₂ uptake (max. <u>59%</u> by mass)
 - $\text{Ca(OH)}_2 \textbf{+} \text{CO}_2 \rightarrow \text{CaCO}_3 \textbf{+} \text{H}_2\text{O}$
- \succ Industrial method of production require energy-, $\rm CO_{2^-}$ intensive calcination
- Here, low-temperature synthesis of portlandite using industrial by-products and waste heat

Upcycled concrete production

Synthesis of calcium hydroxide

Sourcing calcium from slags

- Slags contain about 30–50% CaO by mass; Ca: ~0.2−0.3 g per g slag
- Crystalline slags used as low-value aggregates the target of this process
- Rapidly evolves to a highly alkaline solution amenable to portlandite precipitation (final step)

Kinetics of aqueous Ca extraction

- ≻Up to 10 mM (400 ppm) Ca leached in water after 24 h
- >Rate constants, k derived by fitting $X_{Ca} = kt^{\alpha}$, where $X_{Ca} = \frac{m_{Ca,t}}{m_{Ca,t_n}}$ and $m_{Ca,t}$ and m_{Ca,t_n} are the total mass of Ca dissolved at time, t and at completion, and α is the apparent reaction order
- Analysis reveals effects of processing conditions and slag type

Increasing [Ca] to reach Ca(OH)₂ saturation

- Nanofiltration and reverse osmosis (RD) membranes to concentrate solutions containing ~5-10 mM Ca(OH)₂
- ≻Dow Filmtec[®] NF90 nanofiltration (200–400 Da) or BW30XFR R0 (100 Da)
- \succ Polyamide-thin film composite
- ≻pH range = 2–11 or 2–12
- \succ Salt rejection: 97% MgSO₄ or 99.7% NaCl

Concentration of $Ca(OH)_2$ solutions

- Ca concentration factor up to >2x using RD membrane (vs. <1.2x using nanofiltration)</p>
- ➢ RD showed greater Ca rejection (>98%) than nanofiltration (<20%)</p>
- RD suitable for concentration of alkaline Ca-rich solutions
- ≻Operating pressure: 50–60 psi

Temperature ramping for precipitation

- Portlandite solubility decreases with increasing temperature
- Up to 500 ppm can be precipitated from a saturated solution
- pH adjustment not needed because slag leachate is alkaline

Precipitation kinetics of portlandite

- Ca(OH)₂-saturated solutions ([Ca]=21 mM) in a batch reactor
- Temperature ramped up from 25 to 85 tC at different rates
- > Portlandite precipitation initiates at ~55–65 tC, depending on ramp rate
- ➢ Ongoing studies on controls on kinetics (e.g., induction time, ∆G, continuous stirred-tank reactors)

Summary: Low-temperature synthesis

- Crystalline slags dissolve sufficiently up to 10 mM Ca after 24 h
- RD membrane filtration enable concentration of alkaline Carich solutions
- Precipitation via temperature ramping occurs rapidly starting at T ~ 55 +C
- Energy consumption? Implementation at a laboratory or industrial scale?

Energy consumption per kg Ca(OH)₂

➢Total is ~3630 kJ/kg (excluding Q_{sensible}), similar to theoretical energy for calcination-based synthesis

Process simulations using Aspen Plus™

- Minimize precipitation power at fixed Ca(OH)₂ throughput
 - \succ Water recirculation
 - ≻Heat recovery
- ➤ Minimize water consumption & pumping power at fixed precipitation power

Minimization of precipitation power

- \succ Increasing T decreases water consumption (Case I)
- Recirculation of precipitation filtrate as RD feed ([Ca]: 10–13 mM) –Reduced water consumption (Case II)
- $\succ \dot{W}_e$ constant for variable T (lower T_{st} results in higher [Ca] in recirculate)
- Input power largely unaffected by water recirculation

Process optimization and heat integration

- > Precipitation power, $\dot{Q}_{pr} = \dot{Q}_{in} + \dot{Q}_{re}$, where \dot{Q}_{in} is the input from a waste heat and \dot{Q}_{re} is from heat recovery
- ≻Utilize heat of recirculated saturate (Case III)
- Heat recovery does not affect water consumption and pumping power (compare with Case II)
- \succ Significantly reduced \dot{Q}_{in}

CO_2 emissions reduction of Ca(OH)₂ mortars

 $\succ \mathrm{CO}_2$ emissions for \mathrm{Ca(OH)}_2 calculated based on pumping energy

> CO₂ emissions of 38 kg CO₂/m³ (vs. OPC-based concrete: 300.6 kg CO₂/m³), results in CO₂ emissions reduction of 75%

 \gg Assuming a CO₂ uptake of 5% by mass of solids, CO₂ emissions reduction increases to 120%

Conclusions

- Low-temperature synthesis of portlandite envisioned to employ waste heat from a power plant (flue gas, blowdown steam)
- Considering pumping power only, new process features lower energy requirement than typical industrial process
- Additional strategies to reduce water use include: permeate recycling to leaching reactor, and utilization of moisture from blowdown steam
- > Precipitated portlandite mixed within net CO₂-negative concrete

Acknowledgements

