RECENT ADVANCEMENTS IN MECHANICAL EARTH MODELING AT FARNSWORTH WEST UNIT

Robert Balch New Mexico Inst-Mining & Technology Petroleum Recovery Research Center, Socorro, NM

Presentation Outline

- SWP Overview
- Coupled Hydrodynamic/Geomechanical Modeling Workflow Overview
- Petrophysical-Mechanical Modeling
- FWU Life-of-Field Coupled Modeling
- Integrated Stress Model Calibration Workflow
- Stress-Strain-Velocity Evidence in Log and Core

Southwest Regional Partnership - Farnsworth

- Farnsworth Unit was discovered in 1955
 Over 100 wells were completed by the year 1960.
 - Water injection for secondary recovery started in 1964.
 - \circ CO₂ first injected in 2010.
- Anthropogenic Supply: 500-600,000 Metric tons CO₂/year supply

Coupled Geomechanical Modeling Workflow

- Geologic model captures structure and stratigraphy and also integrates well logs and 3D seismic
- 13-10A 1D MEM elastic properties is correlated with the 3D seismic to populate geomechanical properties of the 3D MEM.
- Existing compositional hydrodynamic simulation is coupled with geomechanical computations.
- Volumetric strain reflects porosity changes and impacts permeability
 - \rightarrow One Way
 - \rightarrow Two Way

Reservoir Simulation Model Poro-Perm and Faults

Sim Model Embedding for Mechanical Boundaries

and over/under/side burden

Mechanical Property Interpolation with Elastic Inversion

Oil/Gas Production History Match and Pressure History

Coupled Simulations

- Coupled simulations were run for depletion-waterflood and CO₂ WAG periods to investigate importance of stress dependent permeability on reservoir performance and geomechanical state.
- Permeability is updated at selected pressure steps using Kozeny-Carman relationship where porosity change is a function of total volumetric strain from initial condition.
- Stress dependent permeability measurements on core are under way at NMT.

Primary and Secondary (Waterflood) Mohr Circle Analysis

Impact of Permeability Updating: Primary-Waterflood Period

Farnsworth CO₂-WAG Mohr Circle Analysis

Impact of Permeability Updating: WAG Period

Coupled Stress Model Calibration Workflow

Machine Learning Calibration Strategy

Our workflow uses machine learning at the highest level for solving the complex inversion problem

In this project we will train two different version of proxies to assist the history matching:

1. Forward-looking Proxy:	$A \times B \rightarrow C$	
2. Inverse History matching Proxy:	$C / B \rightarrow A$	

Stress Indicators: Borehole Deformation

Stress Sensitive Velocity in Core

Stress Evidence of Microcracks in Core Analysis

Summary

Ongoing geomechanical studies at PRRC enjoy the benefits of:

- An excellent field dataset for "life-of-field" reservoir engineering studies
- Highly developed geological and calibrated compositional reservoir simulation models
- A rich core, log, and geophysical dataset for geomechanical characterization

PRRC has leveraged these to receive award of a challenging Stress Modeling project which is funding:

- Studies into characterization of induced microseismicity
- Development of machine learning methods for model optimization
- Advanced geophysical and log analysis for geomechanical characterization
- Collaboration with national laboratories on advanced seismic analyses

Acknowledgement

- Funding for this project is provided by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) DOE Award No. DE-FE31684 and through the Southwest Regional Partnership on Carbon Sequestration (SWP) under and under DOE Award No. DE- FC26-05NT42591.
- The presenter thanks Bob Will, Tom Bratton, William Ampomah, Don Lee, and Marcia McMillan for their contributions to the work presented here.
- Additional support has been provided by the site operator and Schlumberger.

Questions

Embedded Area

Farnsworth Primary Depletion, Waterflood, and CO2 WAG History Match: 1956-2018

Strain Boundary Condition - Model Initialization

Track 2/3 Young Modulus

Poisson ratio

<u>Track 4</u>

- Model Min Principal Strain Model Mid Principal Strain
- Analytical Eps_x
- Analytical Eps_y