Technology Collaboration Programme

www.iea

An overview on the IEAGHG technical programme: CO₂ capture technologies for the power and industrial sectors, their integration, and potential to reduce costs Monica Garcia Ortega Technology Analyst, IEAGHG CMTC-2019

July 16th 2019, Houston (TX, USA)

Views, findings and publications of the IEAGHG do not necessarily represent the views or policies of the IEA Secretariat or its individual member countries.

Who are we?

Our internationally recognised name is the IEA Greenhouse Gas R&D Programme (IEAGHG). We are a Technology Collaboration Programme (TCP) and are a part of the International Energy Agency's (IEA's) Energy Technology Network.

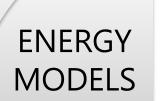
<u>Disclaimer</u>

The IEA Greenhouse Gas R&D Programme (IEAGHG) is organised under the auspices of the International Energy Agency (IEA) but is functionally and legally autonomous. Views, findings and publications of the IEA Greenhouse Gas R&D Programme do not necessarily represent the views or policies of the IEA Secretariat or its individual member countries.

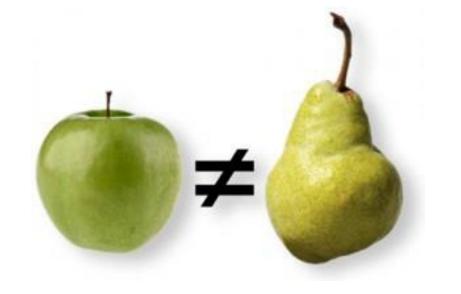
What I am going to talk about

- The problem
- How we have studied the problem
 - Power
 - o Towards zero emissions from fossil-fuel-fired power stations
 - o Review of fuel cells with CCS
 - o Valuing flexibility in CCS power plants (FlexEVAL)
 - Crosscutting issues
 - o Effects of plant location on the costs of CO₂ capture
 - Further assessment of emerging CO₂ capture technologies and their potential to reduce costs (Ongoing)
 - Understanding the cost of reducing water usage in coal and gas fired power plants with CCS (Ongoing)
 - Industry
 - Cost of CO₂ capture in the industrial sector: cement and steel industries

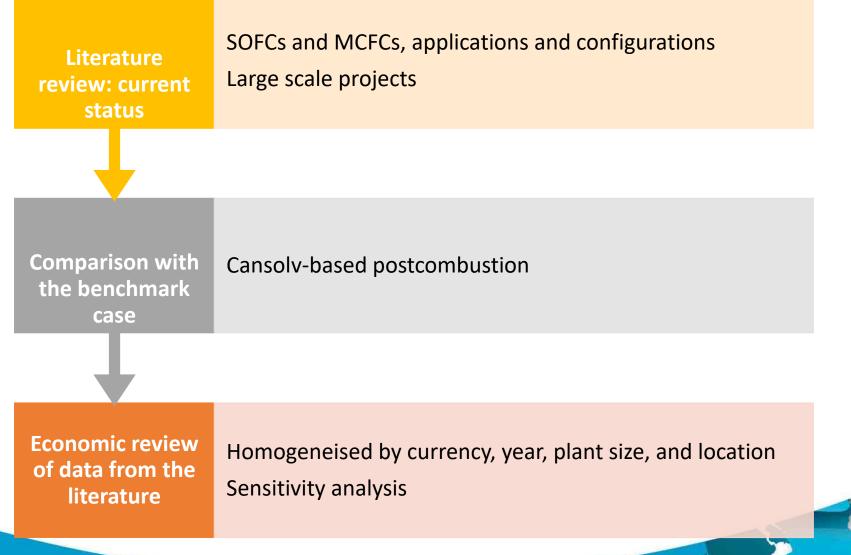
The problem



- CO₂ capture is recognised as an important contribution to decarbonize the electricity system and the industrial sector
- BUT: price, integration, full CO₂ reduction?
- IEAGHG commissioned 7 studies in the 2017-2019 period, linked to power and industrial plants, and the concerns above


POWER PLANTS

COST



INTEGRATION

Review of Fuel Cells with CO₂ capture

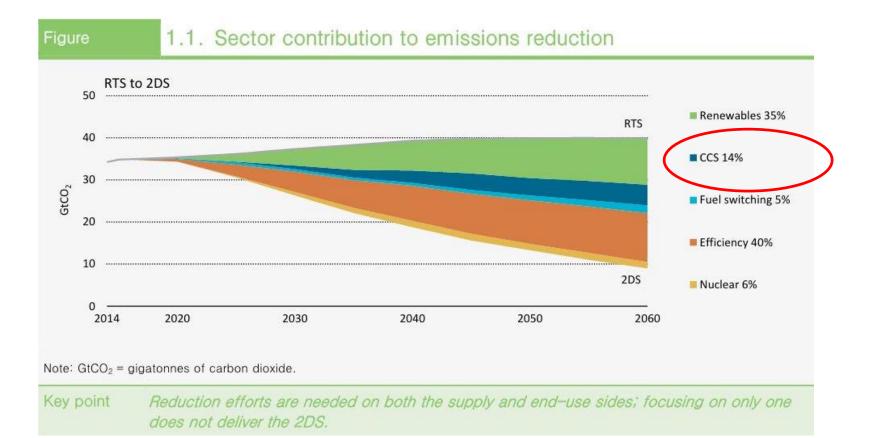
Case	Description
Case 1a	Supercritical Pulverised Coal (PC) boiler plant
Case 1b	PC boiler plant with CCS (Cansolv CO ₂ Capture Process)
Case 2a	Natural Gas Combined Cycle (NGCC) plant
Case 2b	NGCC plant with CCS (Cansolv)
Case 3a	Integrated Gasification Combined Cycle (IGCC) plant (GEE Radiant Gasifier)
Case 3b	IGCC plant (GEE) with CCS (2-Stage Selexol)
1	Atmospheric NGFC (utilising MCFC) + cryogenic CO ₂ separation
2	Atmospheric IGFC+ utilising SOFC+ oxy-combustion+ condensation
3	Pressurised IGFC (utilising SOFC) + oxidation + flash cascade
4	Pressurised NGFC (utilising SOFC) + oxidation followed by flash cascade
5	Atmospheric MCFC with Natural Gas at the anode and exhaust from PC boiler at the cathode +oxy-combustion+ condensation

Review of Fuel Cells with CO₂ capture

 The CO₂ avoided cost is low for case 5 (to note the methodology limitation), and still competitive LCOE

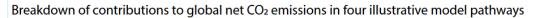
Case	Ref 1a	Ref 1b	Ref 2a	Ref 2b	Ref 3a	Ref 3b	1	2	3	4	5	
Performance												
Net Power Output (MWe)	634	634	634	634	634	634	634	634	634	634	634	
Net Plant HHV efficiency (%)	40.7	32.5	51.5	45.7	39.0	32.6	58.9	49.4	44.8	74.0	45.6	
HHV Thermal Input (MWth)	1557.7	1950.8	1231.1	1387.3	1625.6	1944.8	1076.8	1283.4	1415.2	856.8	1389.7	
CO ₂ emissions (g/kWh)	774	97	357	40	782	93	98	1	0	0	113	
CO ₂ Capture (%)	0	90	0	90	0	90	72	>99	100	100	88	
Cost												
Installed cost (2017 M€)	1653.4	2875.1	558.6	1208.7	1974.2	2761.3	800.7	3164.7	3234.2	3367.3	1185.1	
LCOE (2017€cent/kWh)	9.61	15.20	6.05	9.09	11.01	14.74	6.92	19.18	18.75	19.55	8.62	
Cost of CO ₂ avoided (2017 € /t CO ₂)	N/A	82.6	N/A	96.0	N/A	54.2	33.5	104.7	99.0	378.2	-15.0	

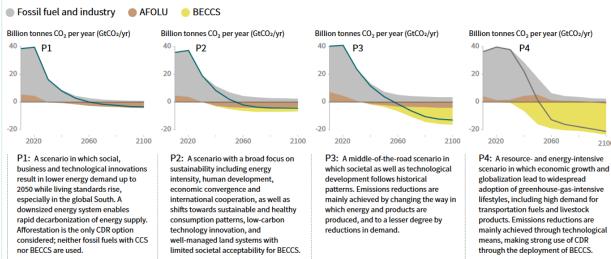
Review of Fuel Cells with CO₂ capture



 The results of this study show that FC with CCS hybrid cycles have the <u>potential to be</u> <u>competitive</u> with current state of the art carbon capture technology but not yet there.

90% CAPTURE RATE... WHY?





https://www.iea.org/reports/energy-technology-perspectives-2017

Towards zero emissions from fossilfuel-fired power stations

- **IEAGHG Note: IAMs typically assume** Capture rate of 90% - this is a limiting factor for CCS deployment from IAMs later this century.
 - https://www.ipcc.ch/report/sr15/

2100

IEAGHG Technical Report 2019-02 March 2019

IEA GREENHOUSE GAS R&D PROGRAM

Towards zero emissions from fossilfuel-fired power stations

Review of current energy models Impact of 100% capture rate Meaning in the B2DS

Review of capture rate of capture technologies

Theoretical performance Experimental performance at large scale

Extract barriers to achieve capture rate >90%

Why capture rate has been limited to 90% Recommendations, analysis of incentives Techno-economic assessment for 90-99.7% capture rate

Towards zero emissions from fossilfuel-fired power stations

More attention is needed on zero emission fossil fuel power plants using CCS in research and development: <u>DEPLOYMENT</u>

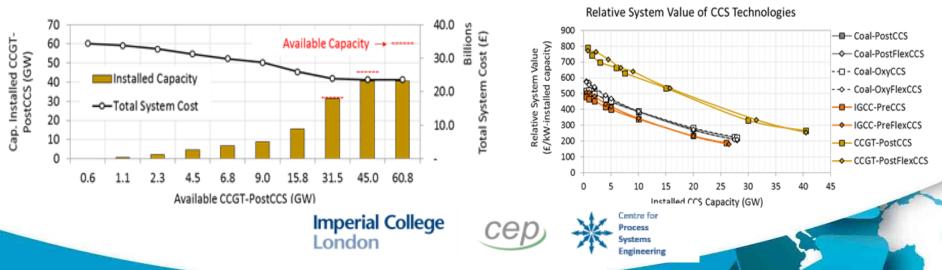
> Increasing capture rate to 99.7% on USC coal plant with CCS, I COF increased by 7% and CO₂ avoidance cost 3% (essential to demonstrate in practice)

DOES IT FIT?

Valuing flexibility in CCS power plants (FlexEVAL)

Identify the role of flexibility in UK electricity It is not CCS alone that will achieve the decarbonisation of the power sector, but rather a well-balanced combination of technologies

Develop a metric to evaluate the wide benefit of technologies LCOE is an intuitive metric BUT does not account for price and production variability of vies an indication for the impact a technology has on the energy economics or flexibility

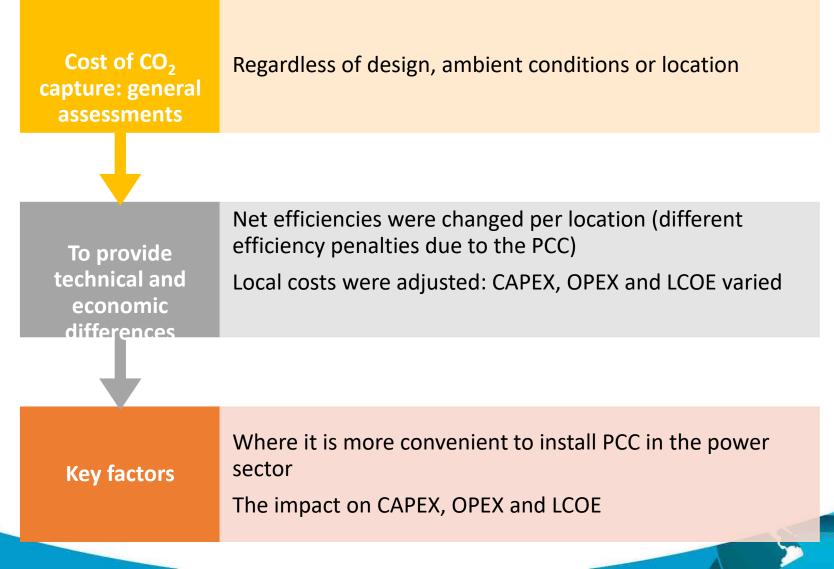

Quantify the value of CCS on the UK electricity system System Value (SV): marginal change in total electricity generation cost from integrating an additional unit of that technology

Intended to create a complete understanding for the system synergy and challenges

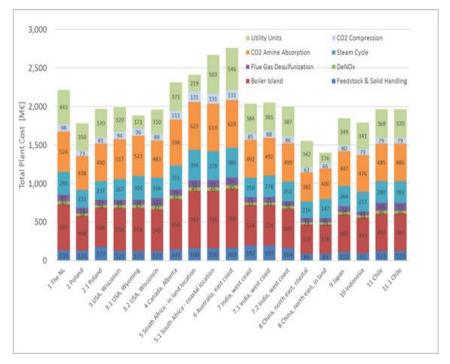
Valuing flexibility in CCS power plants (FlexEVAL)

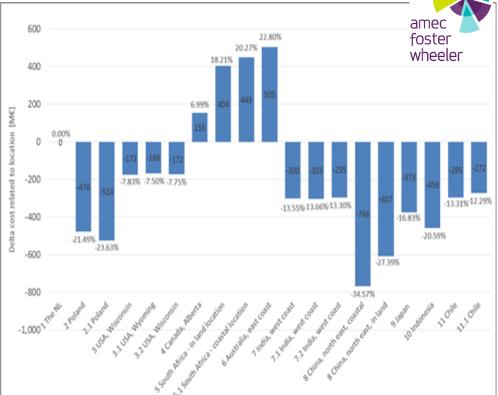
- Flexible CCS provide and added VALUE by accommodating high level of intermittent renewable capacity, reducing Total System Cost. It reduces the interconnection capacity, reducing the electricity imports (also limited)
- The interaction of CCS technologies with renewable capacity is decisive. However, lower CCS use due to high use of renewables could disincentivise investment

CROSSCUTTING ISSUES

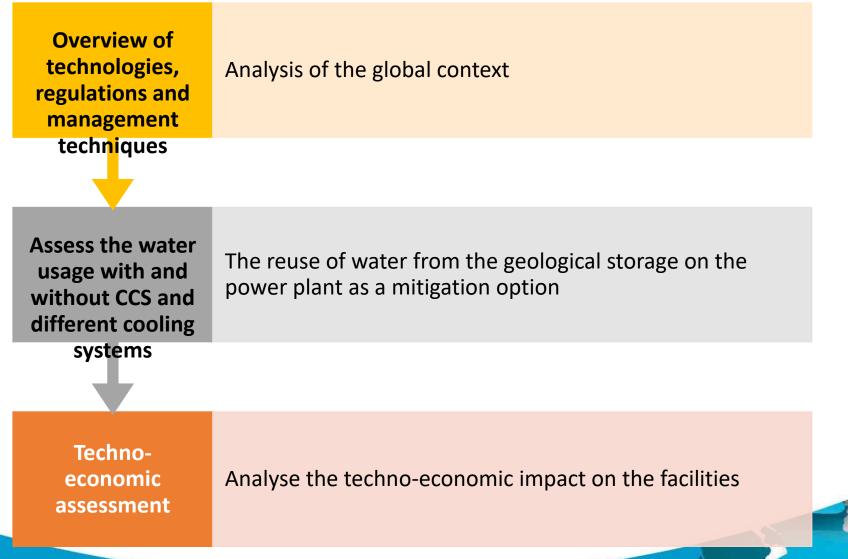


SAME SOLUTION WHEREVER YOU ARE?




Effects of plant location on the costs of CO₂ capture

Effects of plant location on the costs of CO₂ capture



The design accounts for 20% of the plant cost and 25% on the specific plant cost

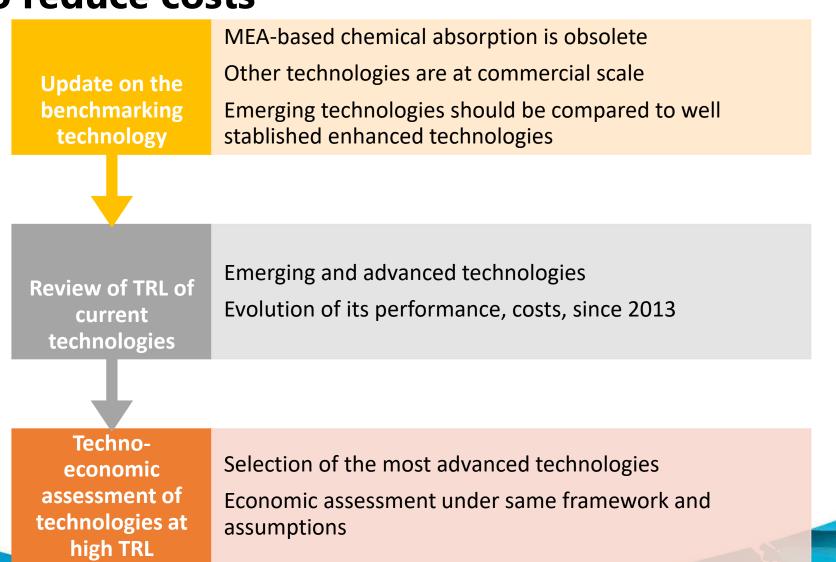
Lowest costs were found in China, highest cost in Australia and South Africa due to higher labour cost and lower productivity respectively (20% increase)

Understanding the cost of reducing water usage in coal and gas fired power plants with CCS

Understanding the cost of reducing water usage in coal and gas fired power plants with CCS

- It is possible to mitigate the water consumption increase due to a CO₂ capture system
- The re-use of extracted water can be convenient under specific conditions
- Regulations are key
- Challenges: option of reusing O&G infrastructure, design of the CCS system, salinity, distances

Further assessment of emerging CO₂ capture technologies and their potential to reduce costs


ASSESSMENT OF EMERGING CO₂ CAPTURE TECHNOLOGIES AND THEIR POTENTIAL TO REDUCE COSTS

Report: 2014/TR4 December 2014

- Post-combustion was assessed as the most advanced system
- LCOE and the prospects for its reduction were assessed
- Cost-drivers, energy requirements were analysed
- This report needs continuous updates

Further assessment of emerging CO₂ capture technologies and their potential to reduce costs

Further assessment of emerging CO₂ capture technologies and their potential to reduce costs

CSIRC

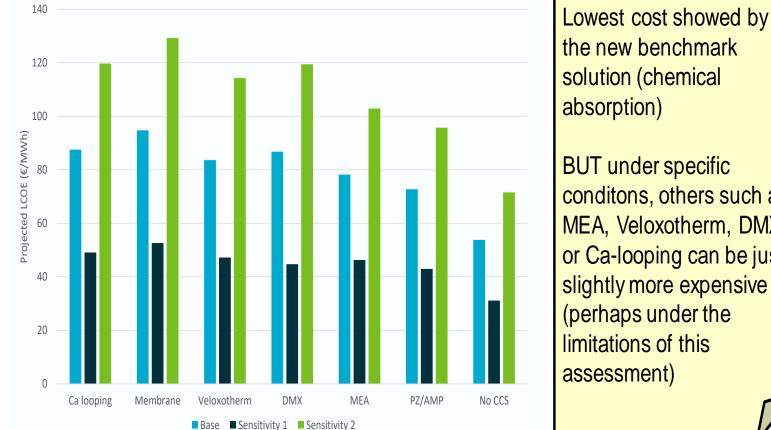


Figure 2 Comparison of levelised cost of electricity (LCOE) of coal-fired technologies

CCS = carbon capture and storage; DMX = proprietary process developed at French Petroleum Institute Energies Nouvelles; MEA = monoethanolamine; PZ/AMP = piperazine/amino-methyl-propanol

conditons, others such as MEA, Veloxotherm, DMX or Ca-looping can be just slightly more expensive

Different fluegas, conditions, and integration....

Cost of CO₂ capture in the industrial sector: cement and iron and steel industries Thanks to the external reviewers

 Selection of transparent studies

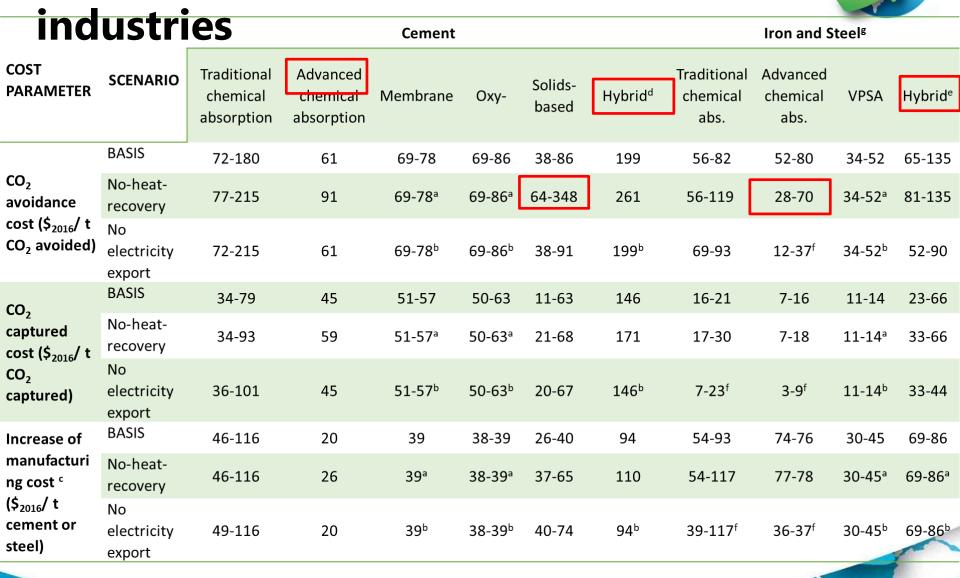
> **Screening of** publications

 North West European context

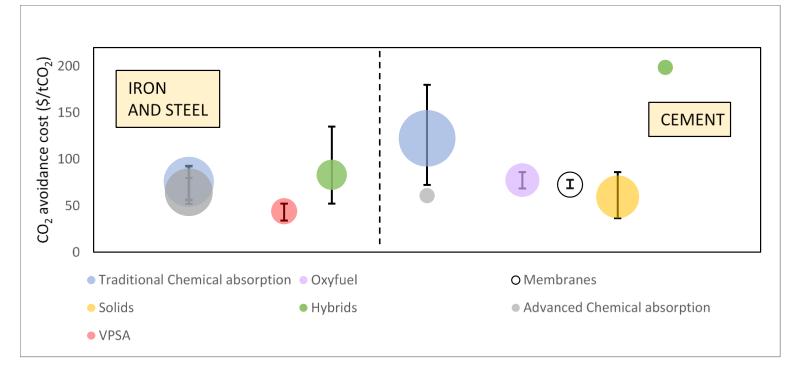
Standardization of key input parameters

- Materials and energy flows for an average plant (plant size, capacity factor, grid CO₂ intensity, CO₂ compression outlet)
- CAPEX, OPEX
- Cost metrics

- As in the literature
- No waste heat
- No selling electricity to the electricity grid


Assessment of technologies under three scenarios

Sensitivity analysis


- Select technologies to go under analysis
- Under basic scenario: still differences on how the technologies were assessed

Cost of CO₂ capture in the industrial sector: cement and iron and steel

Cost of CO₂ capture in the industrial sector: cement and iron and steel industries

We cannot select the BEST technology for each sector. The review covered a wide range and the cost is very site-specific

Conclusions

• THE DEVIL IS IN THE DETAILS

- CCS must be evaluated individually for each region.
- LCOE does NOT represent the value of the technology within a complex electricity grid
- Any tool to achieve the decarbonised scenario must be implemented. Reaching a CO₂ emissions reduction > 90% is essential
- Chemical absorption is still the most advanced CO₂ capture technology. However, new systems are emerging
- Water consumption is an issue but can be mitigated
- Large demonstrations projects in the power and industrial sectors are still needed

ASK US FOR MORE INFORMATION! monica.garcia@ieaghg.org

