The dual challenge: providing energy while reducing emissions Source: EO18 ### Significant advances required ^{*}Based on average Stanford EMF27 full technology / 450ppm scenarios' CO₂ emissions (~20 billion tonnes including energy and industrial processes), ExxonMobil GDP assumptions consistent with 2018 *Outlook* #### ExxonMobil is working on technology solutions **Biofuels:** Affordable and scalable lower-carbon fuels **Process Intensification:** Innovative process and/or equipment design with energy-efficient operations **Carbon Capture and Sequestration:** Technology options to maximize efficiency and reduce cost #### Low emissions transportation with advanced biofuels **Today's approach:** Distributed, limited scalability, competes with food and water Our research: Global solutions, scalable, non-competitive with food and water ### Advances in algae biofuels production #### Process Intensification for lower emissions **Today's approach:** Energy intensive and complex Our research: Novel reactor and separations materials, less energy **Near term step:** Lab scale fundamentals leading to pilot plant trials Targeting >25% reduction in CO₂ emissions from processing plants ExonMobil #### Carbon Capture, Utilization, and Storage **Today's approach:** Power consuming, complex Our research: Capture options seeking power gen or min power loss #### Carbonate fuel cells for CO₂ capture - Cathode reduces O₂ and combines with a CO₂ to form CO₃²⁻ - Anode reforms methane (and larger hydrocarbons) to H₂ - Carbonate ion is transported to the anode through the molten electrolyte - At the anode, CO_3^{2-} ions oxidize H_2 to H_2O and generate 2 electrons for circuit #### ExonMobil ## ExxonMobil advancing technology solutions # ExonMobil