

The dual challenge: providing energy while reducing emissions

Source: EO18

Significant advances required

^{*}Based on average Stanford EMF27 full technology / 450ppm scenarios' CO₂ emissions (~20 billion tonnes including energy and industrial processes), ExxonMobil GDP assumptions consistent with 2018 *Outlook*

ExxonMobil is working on technology solutions

Biofuels: Affordable and scalable lower-carbon fuels

Process Intensification: Innovative process and/or equipment design with energy-efficient operations

Carbon Capture and Sequestration: Technology options to maximize efficiency and reduce cost

Low emissions transportation with advanced biofuels

Today's approach: Distributed, limited scalability, competes with food and water

Our research: Global solutions, scalable, non-competitive with food

and water

Advances in algae biofuels production

Process Intensification for lower emissions

Today's approach: Energy intensive and complex

Our research: Novel reactor and separations materials, less energy

Near term step: Lab scale fundamentals leading to pilot plant trials

Targeting >25% reduction in CO₂ emissions from processing plants

ExonMobil

Carbon Capture, Utilization, and Storage

Today's approach: Power consuming, complex

Our research: Capture options seeking power gen or min power loss

Carbonate fuel cells for CO₂ capture

- Cathode reduces O₂ and combines with a CO₂ to form CO₃²⁻
- Anode reforms methane (and larger hydrocarbons) to H₂
- Carbonate ion is transported to the anode through the molten electrolyte
- At the anode, CO_3^{2-} ions oxidize H_2 to H_2O and generate 2 electrons for circuit

ExonMobil

ExxonMobil advancing technology solutions

ExonMobil