

Issues/Opportunities Associated with Section 45Q Incentives

Prepared for: 2019 Carbon Management Technology Conference

Presented by: **Michael Godec,** Vice President **Advanced Resources International, Inc.** Arlington, Virginia USA

July 18, 2019 Houston, Texas

| JAF2019_055.PPT | July 15, 2019 | www.adv-res.com

Introduction

- The stars may be aligning in the U.S. to stimulate widescale deployment of CCUS
 - Let by modifications to the U.S. tax code -- IRC Section 45Q perhaps combined with other incentives.
- However, taking advantage of this opportunity is not without many challenges.
 - What could be the "devil in the details" regarding 45Q implementation
- Key questions:
 - Can new incentives expand the role for CCS/CCUS?
 - Can 45Q incentives also simulate CCS with saline storage?
 - Can/will the U.S. policy/regulatory framework allow this?

Overview of Presentation

- Why could Section 45Q be important?
- What is Section 45Q, and how has it changed?
- What are stakeholders concerned about?
 What may be the "devil in the details"?
- Is 45Q enough? What else could help incentivize CCS?
- How can 45Q implementation learn from experience?

Financial/Regulatory Aspects Associated with New IRC Section 45Q Tax Incentives

International, Inc.

Size of the US CO₂-EOR Prize

In the U.S., about 1/3 of the 624 billion barrel conventional oil endowment will be produced with primary/secondary technologies, leaving behind 414 billion barrels.

Much of this "left behind oil", equal to 284 billion barrels, is technically favorable for CO_2 -EOR and is widely distributed across the U.S.

Of this, at least 80 billion barrels is economic at today's prices, and would require 40 billion metric tons of CO_2 .

Potential Electric Generation CO₂ Sources Above 1 Million Tonnes/Year

The Low-Hanging Fruit: High Purity Stream Potential CO₂ Sources

Main US Efforts to Incentivize CCS

- Bipartisan Budget Act of 2018 (BBA)
 - Enhancements to IRC Section 45Q
 - This is the focus of today's presentation
- California Low Carbon Fuel Standards (LCFS)
- Regional Incentives/Frameworks
- State Incentives

Financial/Regulatory Aspects Associated with New IRC Section 45Q Tax Incentives BBA Enhancements to **IRC Section 45Q -- Highlights**

Previous 45Q	Bipartisan Budget Act of 2018		
 75 million metric ton cap 	 Eliminates 75 million metric ton cap; applies to new facilities that "break ground" by EOY 2023. 		
 Credit based on "captured qualified CO₂" 	 After enactment, credit based on captured "qualified carbon oxide" (CO₂ and other carbon oxides). Allows for the transfer of qualified credits 		
 \$20/metric ton for CO₂ stored and not used for EOR \$10/metric ton for CO₂ stored and used for EOR 	 \$50/mt for geologic storage and \$35/mt for EOR (each rate phases up over 10-year period from 2017 to 2026). Existing qualified facilities would continue to receive the original inflation adjusted \$20 and \$10 credit rates. 		
 Available to <u>facility</u> with capture equipment capturing at least 500,000 metric tons CO₂/year. 	 Capture > 500,000 metric tons CO₂/year for electric generating units; > 100,000 metric tons CO₂/year for other. Credit goes to the <u>owner of the capture equipment</u>. Available to "direct air capture" and "beneficial use (with 25,000 metric ton threshold)" 		
 Credit available until the 75- million-ton cap is reached. 	 Credit available for 12 years from the date the carbon capture equipment is placed in service. 		

Request for Comments by IRS on 45Q Enhancements

- On May 20, 2019, IRS Issued Notice 2019-32: Request for Comments on Credit for Carbon Oxide Sequestration.
- Comments were due July 4, 2019
- 80-85 unique sets of comments were received by IRS.
- These comments should advise how final implementation guidance is developed by IRS.

Areas of Interest in IRS Request for Comments

- How exactly will "secure geologic storage" be deemed creditable? Are "equivalent program" options allowable?
- If leakage occurs after credits are awarded, what terms will apply to the "recapture" of such awarded credits?
- How will "qualifying facilities" be defined?
- What will be the requirements for non-EOR "utilization" of CO, and for associated "life cycle analyses," to certify sequestration volumes?
- How will "commence construction" be established?
- What will IRS allow for credit transferability, timing, flexibility?
- What forms of project structures/partnerships allowed?

Financial/Regulatory Aspects Associated with New IRC Section 45Q Tax Incentives

How will "secure geologic storage" will be established?

- Continue to use EPA GHGRP Subpart RR and EPA/state UIC rules for EOR <u>and</u> saline storage (status quo), and/or
- For storage with EOR
 - Allow use of Class II rules and alternative subparts of the GHGRP (PP, UU, W, C), and/or
 - Allow use of new standards for EOR published by the International Standards Organization, and/or
 - Allow other standards (e.g., state standards like California Low Carbon Fuel Standards/CCS Protocol)
- Need to establish relevant government authority for certifying creditable captured CO₂.
- Can confidential business information be protected, while still providing sufficient transparency?
- Need to align with state resource conservation law.

If leakage occurs, what terms will apply to the "recapture" of awarded credits?

Issues to consider:

- Is there a "statute of limitations" on awarded credits --- how far back can credits be recaptured?
 - Defined number of years
 - After 12 years when credits no longer available
- What is the trigger for recapture?
- To what storage volumes is recapture applied ("last in, first out")
- To what does recapture provisions not apply ("force majeure," accounting and/or reporting errors)

Tax equity investors, in particular, need some understanding of the potential risks associated with long-term credit value.

How will "commence construction" be established?

Issues to consider:

- Physical Work Test
- Five Percent Safe Harbor
- Continuous Construction Safe Harbor Deadline
- Does the "continuous construction requirement" need to be lengthened for large complex projects?
- Scope of the carbon capture project relative to a large industrial complex/CCS system

Other Issues of Concern with 45Q Impact on Deployment of Geologic Storage

- Is 12 years of credits enough for commercial viability?
- What types of business models will involve?
- What will be the role and appetite for financial institutions and tax equity players?
- Is the 12/31/2023 deadline achievable for large, complex (e.g., power generation or direct air capture) projects?
- What impact will CCS have on electricity dispatch?
 - Capture raises costs, reducing dispatch
 - Credits can provide a "bounty," offsetting the cost increase, and thus increasing dispatch.

Are the 45Q Enhancements Enough?

- Continued RD&D to reduce costs of CO₂ capture
- Continued RD&D on "next generation" CO₂-EOR; especially targeting "carbon negative oil"
- Further incentives beyond 45Q?
 - Tax-exempt private activity bonds
 - Master limited partnerships
 - Incentives for CO₂ pipelines/pipeline expansions/buildout
 - Ensuring Parity for Carbon Capture in the Power Sector
 - E.g., CCS included in "Clean Energy" Portfolio Standards
 - State incentives

Support for CO₂ Pipeline Infrastructure

- Regional Initiative co-convened by Governors of Wyoming and Montana.
- Launched in 2015:
 - Officials from 15 states*
 - With industry and NGO stakeholders and experts
- Objectives:
 - Help policymakers better understand states' potential for CCS, CO₂-EOR and utilization
 - Recommend state and federal strategies and policies
- Support implementation of policy recommendations for pipeline project deployment.
- Support other policies to compliment 45Q

*State participation varies and includes governors' staff, cabinet secretaries, utility commissioners and agency and commission staff.

U.S. Regulatory Experience – Class VI

- From 15 years' worth of R&D, a significant foundation of experience regarding injection and CO₂ storage established.
 - Mostly with CO₂-EOR, but also with some deep saline storage
- In 2010, USEPA promulgated Underground Injection Control (UIC) well (Class VI) requirements for non-EOR geologic storage.
 - Little experience existed at the time the Class VI regs were issued.
 - EPA recognized that adaptations may be warranted as more research is conducted, data are acquired, and experience is gained.
 - Preamble states that the Class VI requirements will be reviewed in 6 years; eight years have passed without a review.
- EPA guidance confirms that CO₂-EOR can result in stored CO₂; conversion to Class VI is not required for assuring storage.
- Concerns remain that legal and regulatory obstacles exist to allow CO₂-EOR to be viable source for CO₂ emissions reduction.

U.S. Regulatory Experience – Class VI

- To date, the timeline for obtaining Class VI permits approval has been too long – as much as four years or more.
 - Prior to final Class VI rule, permitting for other well classes also took a long time; processes hindered while Class VI regs were being developed.
- 50-year "default" for post-injection site care (PISC) hinders possible CCS project financing
- EPA's inconsistent application of financial responsibility instruments is hindering permitting and deployment.
- The process for allowing states to acquire primacy for Class VI well permitting has been very slow.
 - North Dakota primacy application approved after years in review.
- Greater Class VI regulatory certainty is necessary to encourage new Class VI projects.

Project ECO₂S Storage Zone Properties

Paluxy sandstone

- Goal: Demonstrate the subsurface at Kemper can safely/permanently store commercial volumes of CO₂
- Abundant stacked saline sandstone bodies in Paluxy, Wash-Fred, and lower Tuscaloosa.
- 350 meters of net sand. Logs and core show sandstone average porosity of 30%(!!)
- Core analysis indicates all sandstones water-saturated
- Darcy-class permeability common (up to 16 Darcies) **High-porosity sandstone** in Paluxy Formation

*ELAN is a mark of Schlumberger

International, Inc.

Storage Complex Capacity

- Each of the three potential storage zones have commercial capacity
- Together the three storage zones result in a gigatonne capacity storage complex that has the potential to act as a regional hub

CO₂ Storage Reservoir	P ₁₀ Capacity (MMmt)	P ₅₀ Capacity (MMmt)	P ₉₀ Capacity (MMmt)
Massive/Dantzler	60	120	200
WashFred.	280	540	920
Paluxy	160	310	530

DOE methodology for site-specific saline storage efficiency calculation based on fluid displacement factors for clastic reservoirs where net pay, net thickness and net porosity are known of 7.4% (P_{10}), 14% (P_{50}) and 24% (P_{90}) (Goodman et al., 2011)

- Low-cost storage options occur beneath the energy facility -- \$2.00 \$4.00 USD per metric ton depending on volume of CO₂ captured (*after DOE investment*)
- Drives the value proposition where existing infrastructure could be utilized for CO₂ capture, compression, transportation and storage

Concluding Thoughts

- Recent incentives 45Q, the CA LCFS, and discussions on regional deployment initiatives – has created a new "buzz" associated with CCS/CCUS in the US:
 - Coupled with continued strong investment in RD&D
- However, substantial challenges remain:
 - Need for clear IRS guidance on the features 45Q.
 - Uncertainty/anxiety concerning the requirements for "certifying and quantifying" volumes stored
 - Lack of a track record for expediting approval for CO₂ storage projects.
 - Are the timelines for commencing construction and receiving credits enough?
- Nonetheless, if these challenges can be overcome, a major kick-start of CCS deployment could result.

Office Locations Washington, DC 4501 Fairfax Drive, Suite 910 Arlington, VA 22203 Phone: (703) 528-8420

Knoxville, TN 1210 Kenesaw Ave. Suite 1210A Knoxville, TN 37919-7736

22 | JAF2019_055.PPT | July 15, 2019 | www.adv-res.com