

A Pressure-drop Method

for Real-time Monitoring the Solid Flux in Circulating Gas-solid Processes

Sihong Gao*, Yiping Fan, Chunxi Lu State Key Laboratory of heavy Oil Processing, College of Chemical Engineering China University of Petroleum, Beijing

FLUIDIZATION XVI

*Reporter E-mail Address: gaosihong@outlook.com

Introduction

- Experimental setup
- Results & Conclusions

FLUIDIZATION XVI

*Reporter

1. INTRODUCTION

FLUIDIZATION XVI

*Reporter

- Circulating Gas-solid Processes
- **CFB**, Circulating Fluidized Bed, Applications: CLC / FCC / IGCC / PFBC / BG
- **CGB**, Circulating Granular Bed, Applications: CR / (M)GBF.....

Chemical Looping Combustion

Fluidized Catalytic Cracking

Circulating Gas-solid Processes

- **CFB**, Circulating Fluidized Bed, Applications: CLC / FCC / IGCC / PFBC / BG
- **CGB**, Circulating Granular Bed, Applications: CR / (M)GBF.....

Solid Circulating Flux -- VITAL PARAMETER

- **Visual Observation** original and basic
- **Solid Accumulation (volume method)** –original and basic
- **Fiber Optical Probe (particle velocity)** low accuracy with many assumptions
- **X-Ray Densitometry** high cost and additional estimation
- **Electrical capacitance tomography** high cost and additional estimation
- **Extraction/Sampling Probe (solid velocity distribution)** intrusive
- > Heat/Mass Transfer or Oxygen Balance limit and outline
- > **Tracer Method (magnetic/radioactive)** intrusive and high cost
- Mechanical Meters (Impact /Spiral flow) online, sensitive but calibration and stability needed
- > **Pressure Drop Method** online, accurate, scalability, simple implementation.

Detailed structure of the C-CGBF system

FLUIDIZATION XVI

*Reporter

Schematic diagram of the experimental setup

• Collector Granules :

•UOP 13X-APG adsorbent granules, $d_p = 2.07 \text{ mm}$; $\rho_b = 666 \text{ kg/m}^3$.

Size distribution of the UOP 13X-APG adsorbent granules (Mastersizer3000)

Analysis

Accumulation Method: $W_{\rm s} = \rho_{\rm b} V/t$

t means the time spent by a given volume *V* of the collector granules downward flowing out of the feeder hopper is recorded by a seconds-counter.

Pressure-drop Method

- Pressure drop of the riser: $\Delta P_r = \overline{\rho}gh + f_g + f_s$
- > the average density of the gas-solids flow in the 4 m riser,

$$\bar{\rho} = kW_{\rm s} / Q_{\rm r}$$

- > $f_{\rm g}$ is the friction loss caused by the pneumatic gas;
- > f_s represents the pressure loss due to the collision between the solids and the riser wall, as well as the collision between the solids themselves.

$$f_s = \xi_s \cdot \overline{\rho} u_t^2/2$$

> Therefore:

$$\Delta P_{\rm r} = W_{\rm s} k \left(gh + \xi u_{\rm t}^2 \right) / Q_{\rm r} + f_g$$

> there is a linear relationship between $\triangle P_r$ and W_s , with an intercept of f_g .

3. RESULTS & CONCLUSIONS

FLUIDIZATION XVI

*Reporter

• Experimental conditions:

Qr	Qt	$\triangle P_r$	Ws	Qr	Qt	$ riangle P_r$	Ws
m³/h	m³/h	kPa	kg/s	m³/h	m³/h	kPa	kg/s
68	0	0.698	0.022	98	0	0.409	0.029
	2	0.817	0.027		2	0.465	0.039
	4	0.889	0.034		4	0.547	0.048
	6	1.026	0.042		6	0.694	0.062
	8	1.161	0.058		8	0.971	0.091
	10	1.557	0.086		10	1.452	0.146
	12	3.020	0.194		12	2.383	0.274
	14	2.879	0.224		14	2.316	0.268
	16	2.908	0.242		16	2.297	0.275
				-			
Qr	Qt	$ riangle P_r$	Ws	Qr	Qt	$\triangle P_r$	Ws
Qr m ³ /h	Qt m³/h	∆P _r kPa	Ws kg/s	Qr m ³ /h	Qt m³/h	∆P _r kPa	Ws kg/s
Qr m ³ /h 128	Qt m ³ /h 0	△P _r kPa 0.026	Ws kg/s 0.417	Qr m ³ /h 158	Qt m ³ /h 0	△P _r kPa 0.012	Ws kg/s 0.496
Qr m ³ /h 128	Qt m ³ /h 0 2	△P _r kPa 0.026 0.040	Ws kg/s 0.417 0.537	Qr m ³ /h 158	Qt m ³ /h 0 2	△P _r kPa 0.012 0.026	Ws kg/s 0.496 0.587
Qr m ³ /h 128	Qt m ³ /h 0 2 4	△Pr kPa 0.026 0.040 0.051	Ws kg/s 0.417 0.537 0.585	Qr m ³ /h 158	Qt m ³ /h 0 2 4	△Pr kPa 0.012 0.026 0.046	Ws kg/s 0.496 0.587 0.709
Qr m ³ /h 128	Qt m ³ /h 0 2 4 6	△Pr kPa 0.026 0.040 0.051 0.067	Ws kg/s 0.417 0.537 0.585 0.705	Qr m ³ /h 158	Qt m ³ /h 0 2 4 6	△P _r kPa 0.012 0.026 0.046 0.068	Ws kg/s 0.496 0.587 0.709 0.875
Qr m ³ /h 128	Qt m ³ /h 0 2 4 6 8	△Pr kPa 0.026 0.040 0.051 0.067 0.091	Ws kg/s 0.417 0.537 0.585 0.705 0.872	Qr m ³ /h 158	Qt m ³ /h 0 2 4 6 8	△P _r kPa 0.012 0.026 0.046 0.068 0.142	Ws kg/s 0.496 0.587 0.709 0.875 1.438
Qr m ³ /h 128	Qt m ³ /h 0 2 4 6 8 10	△Pr kPa 0.026 0.040 0.051 0.067 0.091 0.159	Ws kg/s 0.417 0.537 0.585 0.705 0.872 1.368	Qr m ³ /h 158	Qt m ³ /h 0 2 4 6 8 10	△Pr kPa 0.012 0.026 0.046 0.068 0.142 0.173	Ws kg/s 0.496 0.587 0.709 0.875 1.438 1.693
Qr m ³ /h 128	Qt m ³ /h 0 2 4 6 8 10 12	△Pr kPa 0.026 0.040 0.051 0.067 0.091 0.159 0.254	Ws kg/s 0.417 0.537 0.585 0.705 0.872 1.368 2.125	Qr m ³ /h 158	Qt m ³ /h 0 2 4 6 8 10 12	△P _r kPa 0.012 0.026 0.046 0.068 0.142 0.173 0.228	W₅ kg/s 0.496 0.587 0.709 0.875 1.438 1.693 2.263
Qr m ³ /h 128	Qt m ³ /h 0 2 4 6 8 10 12 14	△Pr kPa 0.026 0.040 0.051 0.067 0.091 0.159 0.254 0.262	Ws kg/s 0.417 0.537 0.585 0.705 0.872 1.368 2.125 2.032	Qr m ³ /h 158	Qt m ³ /h 0 2 4 6 8 10 12 14	△Pr kPa 0.012 0.026 0.046 0.068 0.142 0.173 0.228 0.255	Ws kg/s 0.496 0.587 0.709 0.875 1.438 1.693 2.263 2.457

$Q_{ m r}$	Q_{t}	$\triangle P_{\rm r}$	$W_{\rm s}$
m ³ /h	m ³ /h	kPa	kg/s
98	0	0.409	0.029
	2	0.465	0.039
	4	0.547	0.048
	6	0.694	0.062
	8	0.971	0.091
	10	1.452	0.146
	12	2.383	0.274
	14	2.316	0.268
	16	2.297	0.275

m

Results

a. $Q_t=68 \text{ m}^3/\text{h}$; b. $Q_t=68 \text{ m}^3/\text{h}$; c. $Q_t=68 \text{ m}^3/\text{h}$; d. $Q_t=68 \text{ m}^3/\text{h}$.

C

()

N

 \mathbf{C}

L

U

S

Ι

 \mathbf{O}

N

S

Conclusions

There is a linear relationship between $\triangle P_r$ and W_s , with an intercept of f_g .

 $\Delta P_{\rm r} = KW_{\rm s} + f_g$

•The maximum circulation flux depends on the pressure balance between the material sealing in the moving bed and the riser-spouted bed regenerator;

•The real-time monitoring on the circulation flux by the pressure-drop method was accomplished;

•The theoretical meaning and accurate definition of the parameters in this correlation need further investigation.

	$\triangle P_r$ (kPa)					
W. (1 /-)		68 m³/h	98 m ³ /h	128 m ³ /h	158 m ³ /h	
W _s (Kg/s)	K	13.251	7.890	7.178	8.010	
	\mathbf{f}_{g}	0.175	0.202	0.230	0.357	
0		0.43	0.20	0.23	0.36	
0.020		0.70	0.36	0.37	0.52	
0.040		0.96	0.52	0.52	0.68	
0.060		1.23	0.68	0.66	0.84	
0.080		1.49	0.83	0.80	1.00	
0.100		1.76	0.99	0.95	1.16	
0.120		2.02	1.15	1.09	1.32	
0.140		2.29	1.31	1.23	1.48	
0.160		2.55	1.46	1.38	1.64	
0.180		2.82	1.62	1.52	1.80	
0.200		3.08	1.78	1.67	1.96	
0.220		3.35	1.94	1.81	2.12	
0.240		3.61	2.10	1.95	2.28	
0.260		3.88	2.25	2.10	2.44	
0.280		4.14	2.41	2.24	2.60	
0.300		4.41	2.57	2.38	2.76	

FLUIDIZATION XVI

*Reporter