Gas/solid flow characteristics in a gas-solid cyclone

reactor based on Euler/Lagrange approach

Fluidization XVI

Presenter: Anjun Li

China University Of Petroleum

SIMULATION

RESULTS AND DISCUSSION

CONCLUSION

INTRODUCTION

INTRODUCTION

China University Of Petroleum

PETROLEUM, EAST CHINA

EXPEIMENT

China University Of Petroleum

Table 1–Detail sizes of the cold-model experimental system		
Item	Height (m)	Diameter (m)
Companion bed	11.4	0.5-0.8
Pre-lifting section	2.0	0.3
Riser	14.2	0.1
Stripper	4.8	0.5-0.8
Cyclone	1.3	0.17

CHINA UNIVERSITY of PETROLEUM, EAST CHINA

SIMULATION

> Model:

- RNG k-epsilon model
- Eulerian–Lagrangian approach

Inlet boundary:

- Gas velocity: v_g=13.76 m/s
- Particle: v_p=4.15 m/s
- Particulate loading: 0.31 $\beta_s = \frac{m_s}{m_a}$

Outlet boundary:

- Gas: pressure outlet
- Catalyst: trapped and escaped
- > Wall boundary:
 - No-slip conditions
 - Different coefficients of restitution

The particle diameter corresponding to the volume fractions 5%, 15%, . . . , 95% are assigned to the arranged parcels. And each incident parcel contains only one particle size.

SIMULATION

The validation of the simulation

The pressure drop calculated by DDPM is more reasonable.

China University Of Petroleum

> Dynamic flow of particles

China University Of Petroleum

Particle concentration

- Solid concentration is higher in strands.
- The phase interface structure composed of internal pure gas and external mixtures can be observed.
- The phase interface structure can prevent lights gas products from overcracking.
- The shape of the interface tends to be more circular.

China University Of Petroleum

Particle concentration

- Particle concentration fluctuates around an appropriate value.
- The fluctuation is severe in the mixing chamber and annulus chamber.
- Clusters formation and fragmentation can be observed in the separation chamber.

China University Of Petroleum

Dynamic flow of gas

- The characteristic of circling is well calculated by current model.
- Axial velocity is negative in the central region of the separation chamber.
- Tangential velocity is higher in the mixing chamber and annulus chamber.
- The radial velocity is smaller than other velocity components.

Axial kinetic energy

Radial kinetic energy

Total kinetic energy

- Tangential kinetic energy

China University Of Petroleum

Kinetic energy of air kg/ (m^2/s^2)

Kinetic energy of gas

Tangential and axial kinetic energy accounts for 96.69%-97.11% of total kinetic.

Gas flow is dominated by tangential and axial velocities.

 $K_{i} = \sum_{cell=1}^{cell=n} (1/2) m_{gas} \left| v_{cell} \right|^{2}$

Dynamic flow of gas

4.0

velocitv/m

2.0

1.5

PETROLEUM, EAST CHINA

CONCLUSION

- > The results calculated by **DDPM** are more accurate than DPM.
- > Particles descend in strands in the conical segment and separation chamber.
- Tangential and axial kinetic energy are accounting for 96.69%–97.11% of total kinetic energy and thus dominant.
- The distribution of instantaneous particle concentration and the distribution of instantaneous gas velocity are interrelated. Gas velocity decreases when particle clusters appear, and gas velocity increases when clusters break up.

Fluidization XVI

