

NATURAL RESOURCES CANADA - INVENTIVE BY NATURE

Basic Reactor Design of CanmetENERGY's Pilot- Scale Pressurized Chemical Looping Conversion

Emma Moreside, Robert Symonds, Dennis Lu, Robin Hughes

Fluidization XVI **Guilin**, China May 27, 2019

Leadership in ecoInnovation

Canada

Natural Resources Ressources naturelles Canada

Oil-sands Upgrading Process

Pressurized CLC For Bitumen Extraction

Natural Resources

Pressurized CLC Process Benefits

- Advantages of PCLC:
 - 100% CO₂ capture, no SO_x or NO_x emissions and clean water generation
 - Separation of steam and CO₂ products greater flexibility
 - Pressurized operation increases efficiency and reduces capital expenditures – increased reactivity, reduced equipment size, recovery of latent heat
 - Shop built and transportable CCS technology
- Ilmenite ore as the oxygen carrier:
 - Low cost, abundant, and commercially available
 - Spent carrier is potentially a valuable by-product for the titanium industry – upgrading

Objectives

- Define battery limits and size of major equipment.
- Determine the optimal inner and outer diameters of the fuel reactor, the air reactor bottom and the air reactor riser based on:
- Maintaining the fluidized bed operation in the desired fluidization regime.
- Minimizing the heat loss through the reactor walls.
- Measurement of the U_{mf} and bubble size under elevated pressures

Gas and Particle Properties

Air and NG properties			Ilmenite particle properties		
$ ho_{air}$	2.0	kg/m ₃	$ ho_I$	4400	kg/m ₃
μ_{air}	6.2 ×10 ⁻⁵	Pa	D_{p_I}	1.47×10^{-4}	m
$ ho_{NG}$	2.6	kg/m ₃	ϕ_I	0.75	-
μ_{NG}	4.1×10^{-5}	Pa	3	0.05	-

Determining the Fluidization Regime

 Air reactor bottom and fuel reactor: Turbulent regime

The turbulent regime is desired in fluidized beds in which a gas-solid chemical reaction is taking place which promotes good solid mixing and heat transfer rates.

Air reactor riser: Fast fluidization regime

ans

The fast fluidization regime is desired in risers of circulating fluidized beds in which solids are carried over the top of the column and enter a cyclone for separation from the

Air React	or:	Check:
Riser	Fast Fluidizing (u _{tr})	$u_{tr} < u_{top} < u_{dpc}$
Bottom	Turbulent (u _c)	$u_c < u_{bottom} < u_{tr}$
Fuel Read	ctor:	
Тор	Turbulent (u _c)	$u_c < u_{top} < u_{tr}$
Bottom Natural Resources	Turbulent (u _c) Ressources naturelles Capada	$u_c < u_{bottom} < u_{tr}$ Canada

Fluidization Case Study

- To examine the optimal inner diameter (ID) of each the FR, AR, and riser to operate in the required fluidization regime for the widest range of operating conditions.
- To be flexible in operating pressure, temperature, and thermal input (TI). Therefore, the FR, AR, and riser ID's should be chosen such that the desired flow regime is attained for the widest range of each.

Variable	Range considered
Pressure (kPa)	200 - 1000
TI (kWth)	200 - 800
FR ID (cm)	10.2 - 40.6
AR ID (cm)	10.2 - 40.6
Riser ID (cm)	2.5 - 10.2

Range of variables considered in the fluidization case study

Calculation Methodology

In this study, the following estimation is used (Bi, Grace and Zhu 1995)

•
$$u_{c,tr} = Re_{c,tr} \frac{\mu_g}{\rho_g d_p}$$

•
$$Re_c = 0.565Ar^{0.461}$$
; $Re_{tr} = 1.53Ar^{0.5}$

•
$$Ar = \frac{g\rho_g(\rho_p - \rho_g)d_p^3}{\mu_g^2}$$

• The onset velocity is based on the bed voidance (ϵ), settling velocity (V_s), and net particle circulation flux (G_s) (Kim, et al. 2004)

$$u_{dpc} = 1160\varepsilon V_{S} \left[\frac{G_{S}}{\rho_{p}(1-\varepsilon)V_{S}}\right]^{-0.9} Ar^{-0.2}$$
$$V_{S} = \frac{g(\rho_{p}-\rho_{g})D_{p}^{2}}{18\mu_{g}}; G_{S} = \frac{\dot{m}_{p}}{\pi \left(\frac{D}{2}\right)^{2}}$$
$$u_{FR,AR,riser} = \frac{\dot{V}_{NG,air}}{\frac{\pi}{A}D_{FR,AR,riser}^{2}}$$

Recommended Inner Diameter

HX case study to determine OD

- To investigate the choice of reactor outer-diameter (OD) and the thickness of each layer of insulation surrounding the reactor sections such that heat-loss is sufficiently minimized without requiring costly over-insulation.
- Each reactor section (FR, AR, and riser) will be insulated with three layers:
 - refractory to withstand the high temperatures of reaction,
 - Kaowool 3000 to act as a strong insulator, and
 - a stainless-stee

Radial cross section of insulation and support layers surrounding the FR, AR, and riser

Surrounding air

Heat Flux Equation

 The heat-flux through a cylindrical wall exposed to air is described by (Mills 1999):

•
$$\dot{Q} = \frac{2\pi k_A L(T_1 - T_2)}{\ln(\frac{r_2}{r_1})} = \frac{2\pi k_B L(T_2 - T_3)}{\ln(\frac{r_3}{r_2})} = \frac{2\pi k_C L(T_3 - T_4)}{\ln(\frac{r_4}{r_3})} = h_c A(T_4 - T_5)$$

Where

 \dot{Q} is the heat flux in W,

k is the material thermal conductivity in W/mK,

L is the height of the reactor in m,

T is the wall temperature in $^{\circ}$ C or K,

r is the radius in m,

 h_c is the convective heat transfer coefficient and A is the reactor surface area exposed to air.

Calculation Assumptions

- The following assumptions are made for evaluation of conduction through the walls (middle three terms in Equation):
 - Conduction through air is negligible
 - Conditions are at steady-state
 - Conduction is in the one-dimensional radial direction
 - Contact resistance is negligible
 - Thermal conductivities within one material are uniform throughout the material
- The following assumptions are made for to evaluate convection from the outer-shell to the surrounding air (final term in Equation):
 - Curvature effects are negligible
 - The boundary layer for natural convection begins at the bottom of the cylinder
 - Forced flow over the cylinder is negligible
 - Air behaves as an ideal gas

Recommended Outer Diameter

Recommendation

- Air reactor bottom and fuel reactor: Turbulent regime The turbulent regime is desired in fluidized beds in which a gas-solid chemical reaction is taking place which promotes good solid mixing and heat transfer rates.
- Air reactor riser: Fast fluidization regime

The fast fluidization regime is desired in risers of circulating fluidized beds in which solids are carried over the top of the column and enter a cyclone for separation from the gas.

Reactor Section	Fluidization Regime	Recommended inner diameter	Recommended outer diameter
Air reactor bottom	Turbulent	8"	24"
Air reactor riser	Fast fluidizing	2"	8"
Fuel reactor	Turbulent	4"	24"

Pressurized Fluidization Facility at uOttawa

Facility Photos

Calculations based on Wen and Yu

Experimental	data				
Cold flow rea	ctor				
umf ≈	11.5	cm/s			
dp,average	300	micron			
Best Correlati	Best Correlation to fit data is Wen and Yu				
C1	33.7				
C2	0.0408				
umf	12.7	cm/s			

18

Recordings for Different Sizes @ 7bar

a=155, b=255, c=368, d=512 µm

Canada

Natural Resources Ressources naturelles Canada

Recording data for different sizes @

7bar

Test Summary	
Test No.	4
Date	4/26/2019
Particle Size	155um
Bed Mass	25kg
Pressure	7bar
Gas Density	8.18kg/m3
Predicted Umf	3.5cm/s
Experimental Umf	3.3cm/s
Delta Z	0.31m
Experimental Emf	0.53

Test Summary	
Test No.	2
Date	4/24/2019
Particle Size	368um
Bed Mass	25kg
Pressure	7bar
Gas Density	8.18kg/m3
Predicted Umf	14.7cm/s
Experimental Umf	14.0cm/s
Delta Z	0.31m
Experimental Emf	0.51

a=155, b=368 µm

Recording data for different sizes @

7bar

Test Summary	
Test No.	1
Date	5/7/2019
Particle Size	255um
Bed Mass	25kg
Pressure	7bar
Gas Density	8.18kg/m3
Predicted Umf	8.4cm/s
Experimental Umf	4.6cm/s
Delta Z	0.31m
Experimental Emf	1.00

Test Summary	
Test No.	3
Date	4/24/2019
Particle Size	512um
Bed Mass	20kg
Pressure	7bar
Gas Density	8.18kg/m3
Predicted Umf	22.2cm/s
Experimental Umf	17.2cm/s
Delta Z	0.31m
Experimental Emf	N/A

a=255, b=512 μm

Comparisons

	Umf, cm/s			
	155,	μm	368	μm
P, bar	bar pred exper		pred	exper
1	3.6	3.1	18.7	17.8
4	3.55	3.2	16.3	
7	3.5	3.3	14.7	13.9
10	3.4	3.2	13.6	12
15	3.3	3.3	12.4	10.9
20	3.25	3.1	11.2	10

 $\mathcal{E}_{mf} = 0.49 - 0.56$

$$d_{B,\Delta P} \propto \frac{\sigma_{\Delta P}}{\rho_p g (1 - \varepsilon_{mf})}$$

Canada

Ressources naturelles

= 1.57 – 2.13 cm, at low bed

= 2.15–2.42 cm, at full bed

Natural Resources Canada

Pressurized CLC Current Status

- SAGD performance assessments complete
 - Optimum pressure: 4 to 7 bar(g)
 - Reduced NG and BFW make-up demands
 - Published in IJGGC
 - Presented at the Suncor Academic Forum
- Economic optimization is on-going
 - Pressurized operation reduces both CAPEX and OPEX
 - Initial results presented at the 5th Annual CLC conference
 - Currently using Aspen In-Plant Cost Estimator
 - Invited to submit TEA information to both COSIA and Suncor
- 0.6 MW_{th} PCLC pilot-plant
 - Basic engineering nearly complete
 - Experimental trials expected in 2020

Natural Resources Canada

Ressources naturelles Canada

CLC vessel (above), CO2 processing (below)

Conclusions

- Based on the result which operates in the turbulent regime for the most combinations of thermal input and pressure, the fuel reactor top and bottom inner diameter is recommended to be between 4-5 inches.
- It is recommended that the inner diameter of the air reactor riser be between 2-3 inches to ensure fluidization in the fast fluidizing regime for the most combinations of thermal input and pressure. The air reactor bottom between 8-12 inches to ensure fluidization in the turbulent regime.
- The air reactor bottom and the fuel reactor shells could be retrofitted using existing reactor shells of 24 inch outer diameter. It is recommended that the air reactor riser outer diameter be 8 inches to provide minimal heat loss without exceeding the amount of insulation required.
- The measurements of U_{mf}, E_{mf}, and the bubble sizes are required for designing the pressurized FB reactors appropriately.

