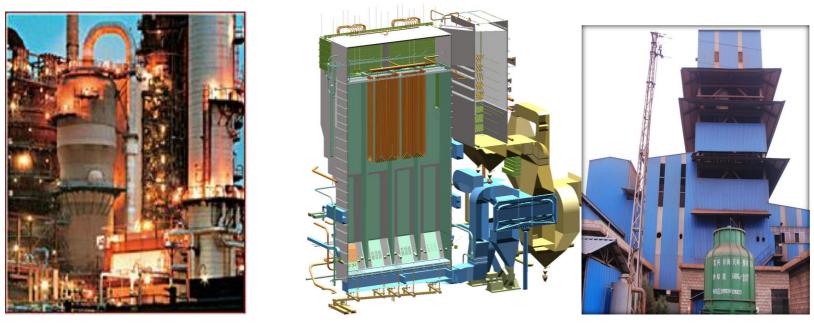


Fluidization XVI

A CFD-DEM-IBM Method for Cartesian Grid Simulation of Gas-Solid Flow in Complex Geometries

Peng Zhao, Ji Xu, Wei Ge and Junwu Wang

State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences

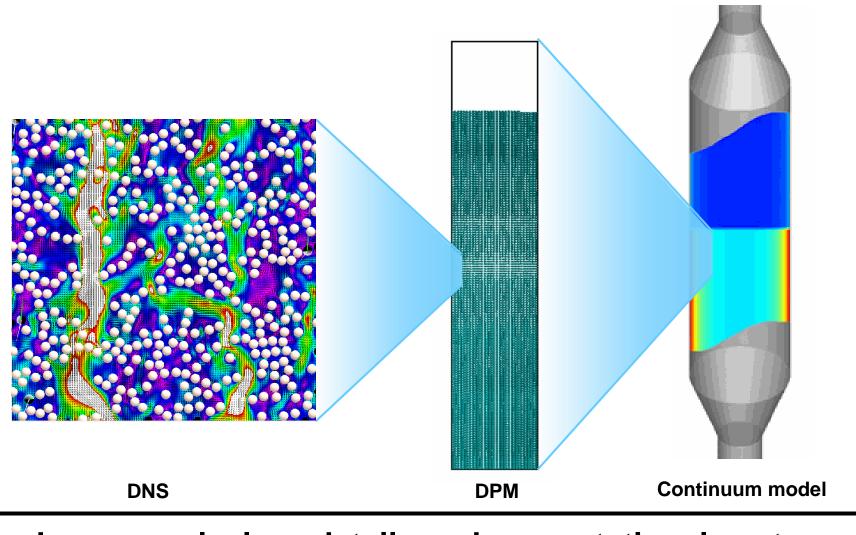

Content

• Background

• CFD-DEM-IBM Method

- Simulation Result
- Conclusion

Fluidized bed in industrial applications


Petroleum catalytic cracking

Coal fired boiler

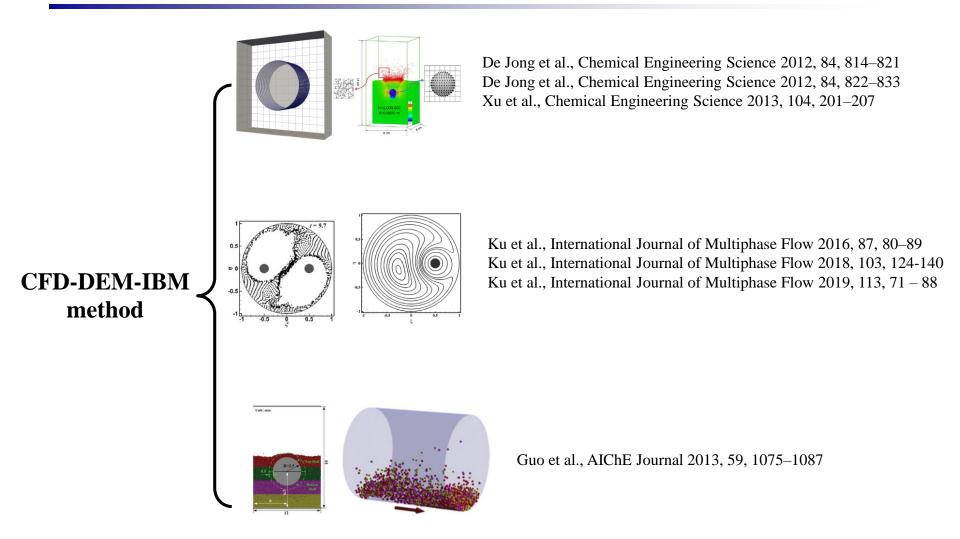
Ore Roasting

Fluidized beds with complex geometries are ubiquitous in industrial applications

Multiscale Simulation of Fluidization

Larger scale, less details and computational cost

van der Hoef et al., Advances in Chemical Engineering. 2006, 31: 65-149


Unstructured VS. Cartesian grids

	Grid generation	Grid quality	mapping the information between two phases
Unstructured	Complicated, time- consuming	Low	Difficult
Cartesian	Simple	High	Exact and analytical

Cartesian-grid-based (coarse-grained) CFD-DEM-IBM method for modeling gas-solid flows in complex geometries

Mittal, R., Iaccarino, G., 2005. Annual Review of Fluid Mechanics 37, 239-261. Kuang, S., Yu, A., Zou, Z., 2008. International Journal of Multiphase Flow34 (11), 1023–1030.

CFD-DEM-IBM method

Can not maintain the sharpness of boundaries due to the use of discrete delta function

Content

• Background

• CFD-DEM-IBM Method

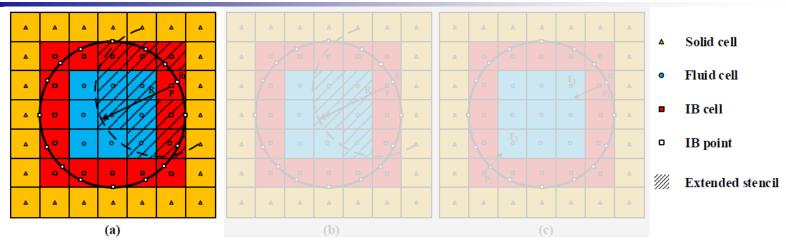
- Simulation Result
- Conclusion

CFD-DEM Method

Volume-averaged Navier-Stokes equations for gas phase:

$$\frac{\partial}{\partial t} (\varepsilon_g \rho_g) + \nabla \cdot (\varepsilon_g \rho_g \mathbf{V}_g) = 0$$
$$\frac{\partial}{\partial t} (\varepsilon_g \rho_g \mathbf{V}_g) + \nabla \cdot (\varepsilon_g \rho_g \mathbf{V}_g \mathbf{V}_g) = -\varepsilon_g \nabla p + \nabla \cdot \mathbf{\tau}_g + \varepsilon_g \rho_g \mathbf{g} - \mathbf{F}_{drag}$$

Particle dynamics:


$$\frac{d}{dt}(I_{p}\overline{\omega}_{p}) = \overline{T}$$

$$m_{a}\frac{d v_{a}}{dt} = -V_{a}\nabla p + F_{drag,a} + m_{a}g + F_{c,a} \iff \text{Linear DEM}$$

Interphase drag force:

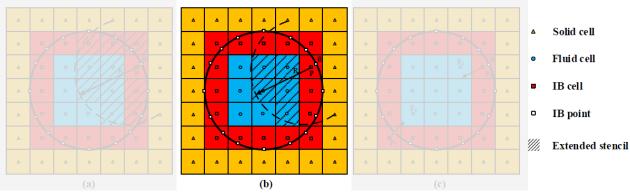
$$\mathbf{F}_{drag} = \frac{1}{V_{cell}} \sum_{\forall a \in cell} \frac{\beta V_a}{1 - \varepsilon_g} (\mathbf{V}_g - \mathbf{V}_a) \delta(r - r_a)$$

Immersed boundary method

Figure 1:The local reconstruction scheme: (a) the second-order polynomial in OpenFOAM, (b) the second-order polynomial in present study, (c) the zero-gradient Neumann BC in present study

Second-order interpolated reconstructed method in OpenFOAM

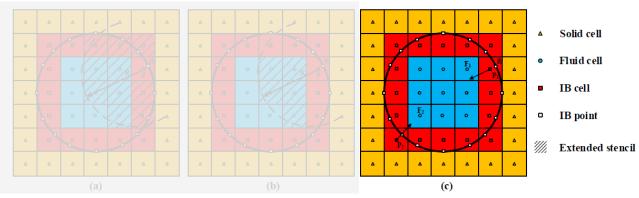
As shown in sub-figure (a), a second-order interpolated polynomial of Φ is used to approximate a generic variable φ in the vicinity of IB points (x_{ib}, y_{ib}, z_{ib}) :


$$\varphi(x, y, z) \approx \Phi(x, y, z) = \sum_{i=0}^{N} \sum_{j=0}^{N} \sum_{k=0}^{N} c_{ijk} \left(x - x_{ib} \right)^{i} \left(y - y_{ib} \right)^{j} \left(z - z_{ib} \right)^{k} \quad i + j + k \le 2$$

The unknown coefficients c_{ijk} are determined using the weighted least square method on extended stencil, and substituted into equation at IB cells, the values of φ IB cells can then be obtained.

Drawback: other IB cells are included in extended stencil, thus iterations are needed

Tukovic, Z., Jasak, H., 2012. Immersed boundary method in OpenFOAM, 7th OpenFOAMr Workshop, pp. 25–28. Mittal, R., Dong, H., Bozkurttas, M., Najjar, F.M., Vargas, A., von Loebbecke, A., 2008. Journal of Computational Physics 227, 4825-4852. **9** Seo, J.H., Mittal, R., 2011. Journal of Computational Physics 230, 1000-1019.


Immersed boundary method

• Second-order interpolated reconstructed method in present study

The neighboring IB cells were not included in the interpolated extended stencil, therefore, iterations are not needed during imposing BCs.

Immersed boundary method

• Second-order interpolated reconstructed method in present study The neighboring IB cells were not included in the interpolated extended stencil, therefore, iterations were not needed during imposing BCs.

• First-order zero-gradient method

Setting the value of flow variables(φ) in IB cell equals to the closet fluid cell in the normal direction: $\varphi_{P1(2)} = \varphi_{F1(2)}$, the normal gradient in IB point was approximately supposed to be zero.

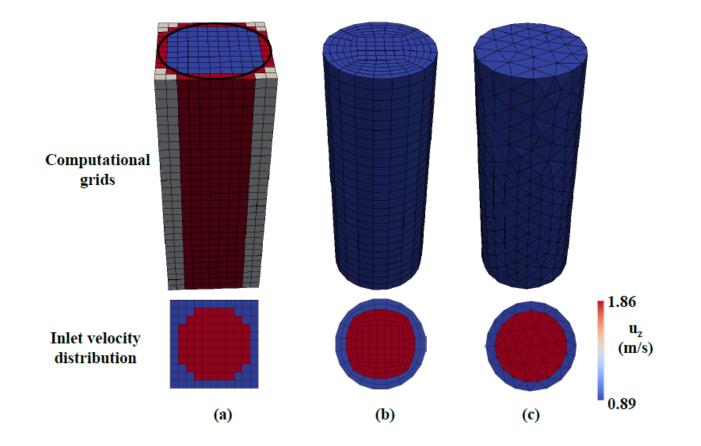
Drawback: only applicable to small gradients

Table 1: Four different BC imposition methods on immersed interfaces

Case	1	2	3	4
U	a	а	b	b
р	a	с	b	С

Tseng, Y.-H., Ferziger, J.H., 2003. Journal of Computational Physics 192, 593-623. Seo, J.H., Mittal, R., 2011. Journal of Computational Physics 230, 1000-1019.

Content


• Background

• CFD-DEM-IBM Method

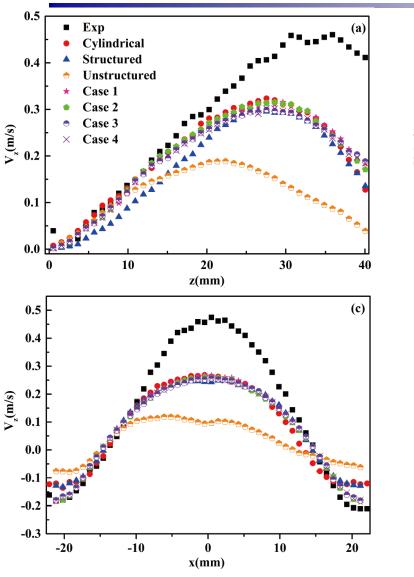
- Simulation Result
- Conclusion

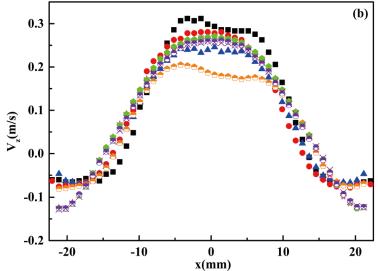
Result

Bubbling fluidized bed

Figure 2: The Cartesian (cube) (a), structured (hexahedron) (b) and unstructured (tetrahedron) (c) fluid grids and the corresponding distribution of inlet velocity of fluidized bed

Result


Bubbling fluidized bed


Table 2: Physical and numerical parameters in cylindrical bubbling fluidized bed

Parameter	Value					
Gas phase	Gas phase					
Initial pressure, p (Pa)	10^{5}					
Temperature, T (K)	298.15					
Inlet superficial velocity, u (m/s)	0.6					
Inlet voidage, ε	0.4					
CFD time step, dt (s)	1.25×10^{-4}					
Particles						
Particle dynamics time step (s)	1.25×10^{-5}					
Diameter of particles, d_p (mm)	1.2					
Density of particles, ρ_p (kg/m ³)	900					
Number of particle, N _{part}	30325					
Normal spring stiffness, k_n (N/m)	3000					
Tangential spring stiffness, k_t (N/m)	428					
Friction coefficient, μ_f	0.1					
Restitution coefficient, e_n, e_t	0.95					
Geometry						
High of bed, H_{bed} (mm)	120					
Diameter of bed, d_{bed} (mm)	44					
Cartesian grid length (m)	0.004					

```
Result
```

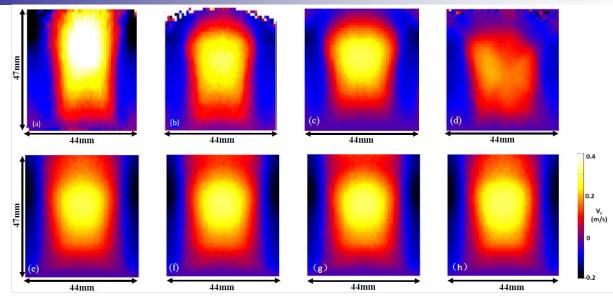
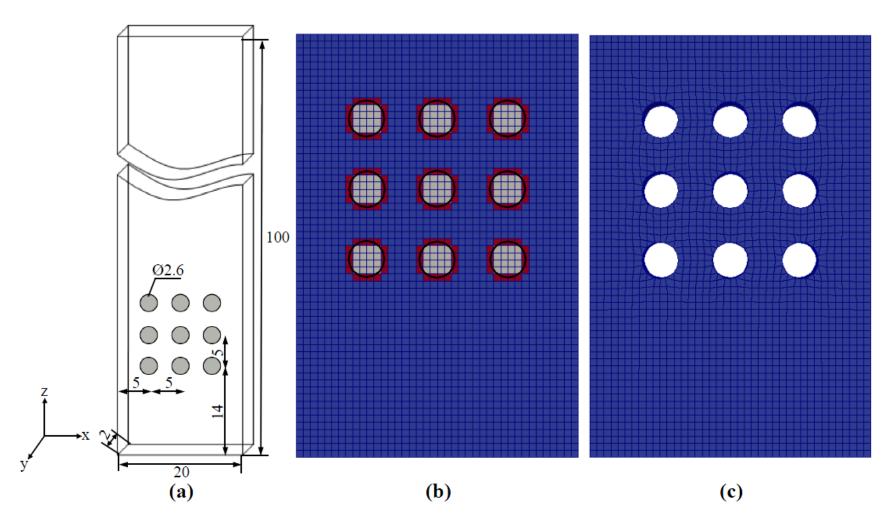

Bubbling fluidized bed

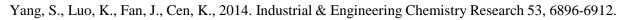
Figure 3: The time-averaged axial particle velocity (m/s) with experiment and simulation under different grid types along (a) a vertical slice at the x-direction centerline, (b) a horizontal slice 20mm above the distributor and (c) a horizontal slice 35mm above the distributor. The grid types including: cylindrical (Boyce et al., 2013), structured, unstructured and Cartesian grid (cases 1-4).

Bubbling fluidized bed

Figure 4: The time-averaged axial particle velocity image from (a) experimental MR imaging (Holland et al., 2008), (b) cylindrical grid CFD-DEM simulation (Boyce et al., 2013), (c) structured grid CFD-DEM simulation, (d) unstructured grid CFD-DEM simulation, (e-h) Cartesian grid CFD-DEM simulation and the interactions of fluid and cylindrical wall were described by cases 1-4, respectively.


Table 3: The number of computational grids and the elapsed CPU time for 20 s real time under different grid types and BC imposition methods on immersed interfaces

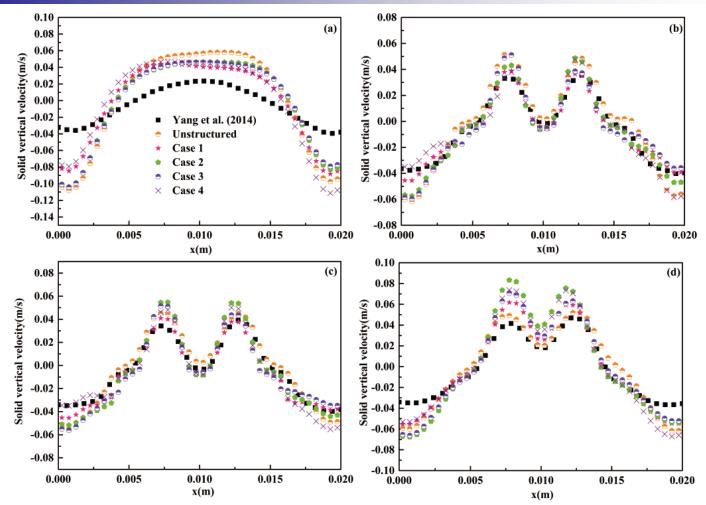
	Case 1	Case 2	Case 3	Case 4	Structured	Unstructured
Number of grids	3270	3270	3270	3270	3250	3264
CPU time(s)	391856	10907	11136	6255	6155	16437


Holland, D.J., Müller, C.R., Dennis, J.S., Gladden, L.F., Sederman, A.J., 2008. Powder Technology 182, 171-181. Boyce, C.M., Holland, D.J., Scott, S.A., Dennis, J.S., 2013. Industrial & Engineering Chemistry Research 52, 18085-18094.

Result

Bubbling fluidized bed with tubes

Figure 5: Geometrical description and local grids around immersed tube bundle: (a) sketch of the bed, (b) Cartesian grids and (c) unstructured grids.



Bubbling fluidized bed with tubes

Table 4: Physical and numerical parameters for simulating the bubbling fluidized bed with immersed tubes

Parameter	Value					
Gas phase						
Temperature, T (K)	298					
Viscosity, μ (Pa s)	1.85×10^{-5}					
Inlet superficial gas velocity, u (m/s)	0.15					
Molecular weight, M (g/mol)	28.8					
Pressure, p (atm)	1.0					
Density, ρ_g (kg/m ³)	1.205					
CFD time step, dt (s)	1.0×10^{-5}					
Particles						
Number of particle	99560					
Diameter, d_p (mm)	0.23					
Density, ρ_p (kg/m ³)	2700					
Normal spring stiffness, k_n (N/m)	5000					
Tangential spring stiffness, k_t (N/m)	714.3					
Friction coefficient	0.3					
Restitution coefficient, e_n, e_t	0.97					
Rolling friction coefficient	0.01					
Particle dynamics time step (s)	5.0×10^{-7}					
Geometry						
Width, x (mm)	20					
Thickness, y (mm)	2					
Height, z (mm)	100					
Cartesian grid length (mm)	0.5					
Tube diameter (mm)	2.6					

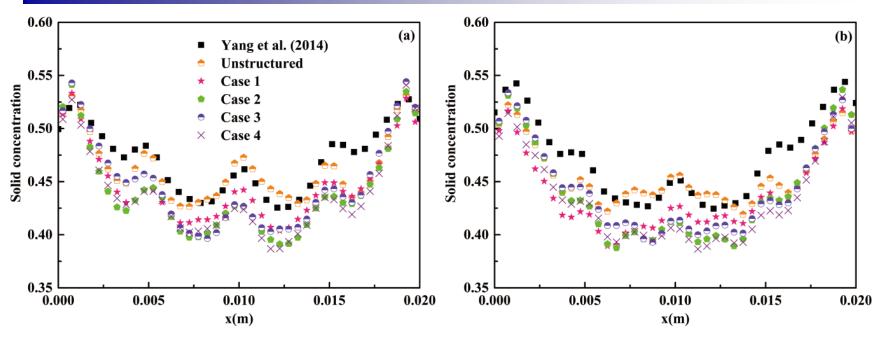

Bubbling fluidized bed with tubes

Figure 6: Comparison of the time-averaged axial particle velocity (m/s) using unstructured and Cartesian grids (cases 1-4) with the simulation results of Yang et al. (2014): (a) z = 0.007 m; (b) z = 0.017 m; (c) z = 0.022 m; (d) z = 0.027 m.

Result

Bubbling fluidized bed with tubes

Figure 9: Comparison of the time-averaged particle concentration using unstructured and Cartesian (cases 1-4) grids: (a) Cartesian grids: z = 0.0165 m, unstructured grids: z = 0.017 m; (b) Cartesian grids: z = 0.0215 m, unstructured grids: z = 0.022 m.

Table 5: The number of computational grids and elapsed CPU time for 20 s real time under different grid types and BC imposition methods on immersed interfaces

	Case 1	Case 2	Case 3	Case 4	Unstructured
Number of grids	31856	31856	31856	31856	31232
CPU time(s)	1635620	361885	357548	341537	523712

20

Content

• Background

• CFD-DEM-IBM Method

- Simulation Result
- Conclusion

Conclusion

- A CFD-DEM-IBM method was proposed for modeling gas-solid flow in complex geometries
- The simulation results agree well with the reported experimental and numerical data available in literature
- The proposed CFD-DEM-IBM method is one or two orders of magnitude faster than that of the original IBM of Tukovic and Jasak (2012) in OpenFOAM

Acknowledgement

National Natural Science Foundation of China (91834303)

- Key Research Program of Frontier Science, Chinese Academy of Sciences (QYZDJ-SSW-JSC029)
- Transformational Technologies for Clean Energy and Demonstration, Strategic Priority Research Program of the Chinese Academy of Sciences (XDA21030700)