CPFD Simulation of a Full-Scale Calciner 🚆 Operating with Refuse Derived Fuel

Mohammadhadi Nakhaei

Postdoc

Technical University of Denmark

DTU Chemical Engineering

Department of Chemical and Biochemical Engineering

Background – alternative fuels in cement calciner

Technical University of Denmark

Background – alternative fuels in cement calciner

3 **DTU Chemical Engineering, Technical University of Denmark**

√ Oil

Motivations

- Waste disposal

Overview of the study

- * Objectives
 - A reliable CPFD tool for simulation of RDF-fired calciners
- * Content

Characterization of RDF

M. Nakhaei et al., Energy & Fuels, 32 (2018), 7685-7700.

CPFD input

Particle size, shape, and material distribution + proper drag model

Characterization of RDF – overall approach

Technical University of Denmark

Conversion of plastic particles

- Conversion of plastics and temperature measurements
- □ A 1-D mathematical model and validate

1100C and 0-0.5 vol.% dry O_2

CPFD input

Simplified conversion model for plastics

900C and 0-0.5 vol.% dry O₂

7 **DTU Chemical Engineering,** Technical University of Denmark M. Nakhaei et al., Fuel Processing Technology, 178 (2018), 213-225.

Conversion of plastic particles – model results

Man-made HDPE particles (cylindrical)

Conversion of plastic particles – model results

Measurements of a full-scale calciner

Technical University of Denmark

Measurements of a full-scale calciner – results

Measured parameters

- ✤ Gas temperature
- ✤ Gas species concentration
 - *O*₂
 - \circ CO_2
 - *CO*
 - o NO
- ✤ Fuel burnout (FFG)
- ✤ Calcination degree (CF)

Measurements of a full-scale calciner – *results*

12 DTU Chemical Engineering, **Technical University of Denmark**

0

Ο

Ο

0

CPFD simulation of a full-scale calciner – *simulation Boundary conditions*

Chemical reactions

* Heterogeneous

- Calcination of raw meal particles
- Oxidation of solid fuel particles
 - ✓ Petcoke
 - \checkmark RDF plastic
 - \checkmark RDF biomass
 - \checkmark *RDF inert*

* Homogeneous

 \circ CH₄ and CO oxidation

CPFD simulation of a full-scale calciner – *results*

14 DTU Chemical Engineering, Technical University of Denmark

CPFD simulation of a full-scale calciner – *results*

Summary and future work

* Summary

- Establishment of a method for physical and aerodynamic characterization of RDF particles
- Development of a simplified model for conversion of plastic particles to be used in CPFD calculations
- Carrying out full-scale measurements of an RDF-fired calciner
- CPFD simulations of full-scale RDF-fired calciner
 - $\checkmark \ \ The \ overall \ trends \ are \ well-predicted$
 - ✓ Still room for improvements (gas temperature)

✤ Future work

- Addition of NOx reaction kinetics to the CPFD model
- Try out the model for other types of calciner systems

Thank you for your attention

DTU Chemical Engineering

Department of Chemical and Biochemical Engineering