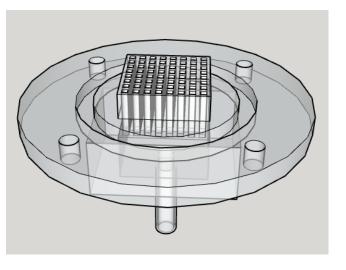

Fluidization of fungal pellets using miniaturized 3D-printed fluidized bed

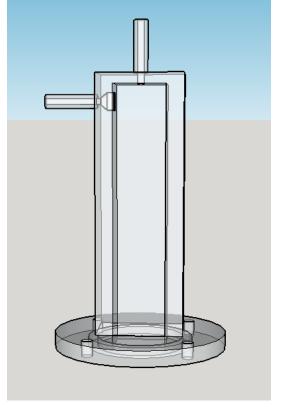
Yi Zhang^{1,2}, Yuen Ling Ng³, Kheng-Lim Goh³, Yvonne Chow², Eric Charles Peterson², Steven Wang¹, Vladimir Zivkovic¹

¹ School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK

² Biotransformation Innovation Platform (BioTrans), Agency for Science, Technology and Research (A*STAR), Singapore 117597, Singapore.

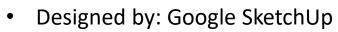
³ Newcastle Research & Innovation Institute Singapore (NewRIIS), 80 Jurong East Street 21, #05-04, Singapore 609607, Singapore


1


Stirred-tank reactor

2

A * S T /


• Fluidized bed design and fabrication

- Printed by: Form2 SLA printer
- Cross-section: 15×15 mm; Bed height: 15 mm
- Planar distributor (5 mm in height): contains 1mm square holes

Assembled fluidized bed

• Fungal pellets

3

Fungi in nature

Fungal pellets in petri dish

Single Pellet in microscope

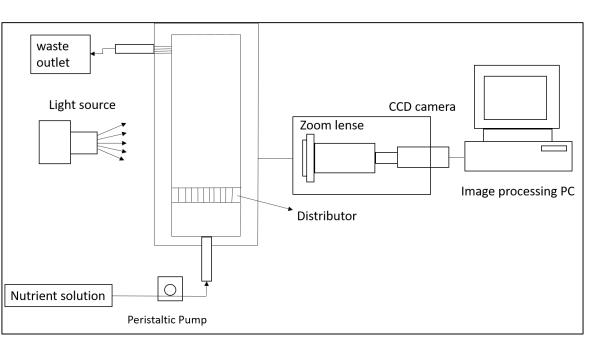
Fungal cells: *Nidula niveo-tomentosa* (Bird's nest fungi) Size: ~2mm Density: 1.1g/cm³ *Pellet properties unique to fungi are an important consideration*

Culture medium •

3

Density: 1.02 g/cm^3 Viscosity: 1.1 mPa.S

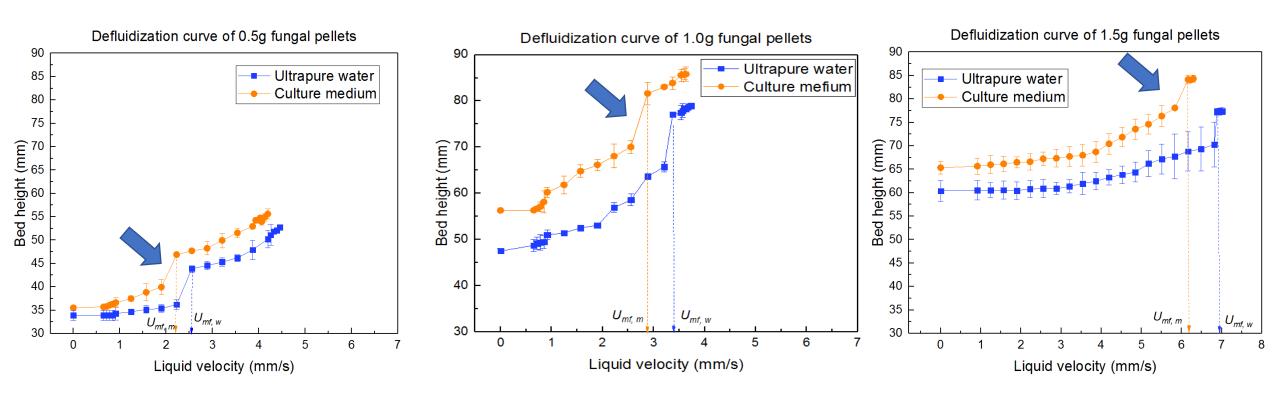
Components of cultivation medium


Components in Media	Concentration (g/L)		
glucose monohydrate	50		
peptone from soy	6		
potassium dihydrogen phosphate	2.5		
magnesium sulfate	0.5		
yeast extract	1.5		
calcium chloride dihydrate	.0735		
Ultrapure H2O	fill up to 1 L		

• Fungal pellets fluidization

Flask culture

Diagram of experimental setup


Fluidization process

3

- The bed height jump occurs when agglomerated pellets become dispersed and fully fluidized, when liquid velocity reaches U_{mf} ;
- The U_{mf} is increasing with mass of fungal cells as the voidage of initial packed bed is increasing with overall mass.

4

• Ergun equation

$$U_{mf} = \frac{d_P^2 (\rho_P - \rho_L) g}{150 \mu_L} \left(\frac{\varepsilon^3 \phi_P^2}{1 - \varepsilon}\right)$$

Pellets mass (g)	0.5		1.0		1.5	
Initial bed voidage, $arepsilon_0$	0.38		0.43		0.51	
Liquid type	Ultrapure water	Culture medium	Ultrapure water	Culture medium	Ultrapure water	Culture medium
Experimental Minimum fluidization velocity (mm/s) $U_{mf,e}$	2.226	1.898	3.210	2.554	6.818	6.162
Theoretical minimum fluidization velocity (mm/s) $U_{mf,th}$	1.869	1.669	2.698	2.409	5.71	5.105

- There are some transitional regime (separated bed, expanded bed) before actual fluidization regime start usually not present in liquid fluidization.
- The agglomerated fungal pellets are separated into dispersed pellets and homogenously fluidized by the liquid flow when liquid velocity reaches the U_{mf} .
- The homogenous fluidization and suspension of pellets exhibit the feasibility of fungal fermentation using fluidized bed bioreactor.
- The experimental value of $U_{mf,e}$ is larger than $U_{mf,th}$ calculated from Ergun equation, mostly due to increase of initial voidage (wall effects) but possible due to surface forces (cohesive forces between pellets).

Future work:

- Fungal pellets fluidization characterization
- Fermentation in gas-liquid-solid fluidized bed (aeration)

Questions?

y.zhang128@newcastle.ac.uk

