See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/335222137

Fully resolved simulation of char particle combustion by IB-LBM

Presentation · May 2019

DOI: 10.13140/RG.2.2.25742.72007

CITATIONS 0	s REAL 62	S
4 autho	rs, including:	
(Maoqiang Jiang Huazhong University of Science and Technology 20 PUBLICATIONS 145 CITATIONS SEE PROFILE	Zhaohui Liu Huazhong University of Science and Technology 175 PUBLICATIONS 1,333 CITATIONS SEE PROFILE
Some of	the authors of this publication are also working on these related projects:	

Fully resolved DNS simulation of suspended coals combustion View project

Multi-scale simulation methods for turbulent reactive gas-solid flow View project

Fluidization XVI

May 26-31, 2019

Guilin Shangri-La Hotel, Guilin, China

Fully resolved simulation of char particle combustion by IB-LBM

Maoqiang Jiang, Zhaohui Liu*, Yan Xiong, Jing Li (zliu@hust.edu.cn)

State Key Laboratory of Coal Combustion Huazhong University of Science and Technology

Guilin, MAY 28, 2019

HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOL

1. Motivation

- Low carbon footprint technologies: Oxy-fuel combustion, Pressurized oxy-fuel combustion, chemical looping combustion.....
- Char combustion: core of coal combustion

Char combustion time: $t_{cc}=3\sim5$ s Volatile combustion time: $t_{vc}=0.01\sim0.1$ s

- Conventional simulation: 1-D model, particle point (PP) model
 - → large error
- FR-DNS: most accurate than 1-D model, build new closure laws for PP model

Coal combustion process

Most FR-DNS works based on incompressibility hypothesis or non-reactive flows

2 Numerical method

2.1 Assumptions and simplifications

- Burning process is quasi-steady,
- Particle porosity inside particle is neglected,
- Particle consists of carbon only,
- Gaseous environment only consists of N₂, O₂, CO, CO₂,
- Temperature gradient within particle is neglected,
- Water vapor is taken into account by having an effect on the CO oxidation reaction,
- Gas radiation is not taken into account

Chemical reactions only happen at or outside solid-gas interface

Makino, A, Toshikazu N, Katsuya K. Combustion rates of graphite rods in the forward stagnation field with high-temperature airflow. *Combustion and flame* 2003, 132(4): 743-753.

Luo K, Mao C, Fan J, et al. Fully resolved simulations of single char particle combustion using a ghost-cell immersed boundary method[J]. *AIChE Journal*, 2018, 64(7): 2851-2863.

2.2 CMDF-LBM for low-Mach reactive flows

- Heat produce/consumption
- Mass produce/consumption
- *dT* and dY is large around particle surface

Significant

density fluctuations (ρ_{max} - ρ_{min})/ ρ_{ave} > 50%

Conventional LBM model (Qian, He-Luo...) by incompressible hypothesis is improper $(\rho_{max}-\rho_{min})/\rho_{ave}<5\%$

 $\rho = P/c_s$

Reaction

• Most industrial flows occur at **low Mach number**: $Ma = \frac{u}{c_s} \ll 1$ Non-linear $Ma = \frac{u}{c_s} \ll 1$ Weakly compressible control equations $\frac{\partial \rho}{\partial t} + \nabla \rho u = 0$ Non-linear $\frac{\partial u}{\partial t} + \frac{1}{\mu} \cdot \nabla u = -\nabla P + \frac{1}{\text{Re}} \nabla^2 u + f$ $\frac{\partial T}{\partial t} + u \cdot \nabla T = \frac{1}{\text{Re}} \nabla^2 T + h$ $\frac{\partial Y_i}{\partial t} + u \cdot \nabla Y = \frac{1}{\text{Re}} S_c \nabla^2 Y_i + \omega_i$ $P = \rho RT$

2.2 CMDF-LBM for low-Mach reactive flows

- Coupled Multi distribution function (CMDF) method
- By Chapman-Enskog procedure, weakly compressible control equations can be derived from the followed evolving equations.

Fluid flow

$$f_{i}(\vec{x} + \vec{c}_{i}\Delta t, t + \Delta t) = f_{i}(\vec{x}, t) - \frac{1}{\tau_{u}}[f_{i}(\vec{x}, t) - f_{i}^{(eq)}(\vec{x}, t)] + \Delta tF_{i}(\vec{x}, t)$$

$$f_{i}^{(eq)} = \chi_{i} + \rho \omega_{i} \left(\frac{(\vec{c}_{i} \cdot u)}{c_{s}^{2}} + \frac{(\vec{c}_{i} \cdot u)^{2}}{2c_{s}^{4}} - \frac{|u|^{2}}{2c_{s}^{2}} \right)$$

$$\chi_{i} = \omega_{i}p/c_{s}^{2} \quad (i \neq 0)$$

$$\rho = \frac{p_{0}\overline{W}}{R_{g}T} \implies \rho = \rho_{0} \frac{T_{0}C_{0}}{TC_{mit}} = \rho_{0} \frac{T_{0}\sum Y_{i}/W_{i}}{T\sum Y_{i}/W_{i}}$$

$$Heat and mass transfer$$

$$f_{s,i}(\vec{x} + \vec{c}_{i}\Delta t, t + \Delta t) = g_{s,i}(\vec{x}, t) - \frac{1}{\tau_{T}}[g_{s,i}(\vec{x}, t) - g_{s,i}^{(eq)}(\vec{x}, t)] + \Delta tQ_{s,i}(\vec{x}, t) \quad (s = T, Y_{k})$$

$$g_{i}^{(eq)} = T\omega_{i} \left(1 + \frac{(\vec{c}_{i} \cdot u)}{c_{s}^{2}} + \frac{(\vec{c}_{i} \cdot u)^{2}}{2c_{s}^{4}} - \frac{|u|^{2}}{2c_{s}^{2}}\right)$$
Reaction source
$$T = \sum_{i} g_{T,i}$$

$$Y_{k} = \sum_{i} Y_{k,i}$$

$$Q_{i} = \omega_{i}(q_{r} + q_{iB})$$

2.3 BTDF-IBM for reactive gas-solid interaction

Boundary-Thickening based Direct forcing-immersed boundary method

(Jiang&Liu, J. Comput. Phys., 2019)

2.4 Major reactions of carbon combustion

Heterogeneous reactions

- $2C+O_2 \rightarrow 2CO$ (R1)
- $C+CO_2 \rightarrow 2CO$ (R2)

Surface mass produce and consumption

Homogeneous reaction

$$CO+0.5O_2 \rightarrow 2CO_2 \quad (R3)$$

Source term
$$q_{Y,i} = \frac{1}{\rho} R_3 M_i \qquad (1/s)$$
$$q_T = \frac{1}{\rho c_n} R_3 \Delta h_3 \qquad (K/s)$$

Reaction	Reaction rate		Arrhenius formula	Reaction heat Δh, (KJ/mol)
R_1	<i>K</i> ₁ [O2]	mol/(m ² .s)	K ₁ =1.97x10 ⁷ e ^(-23815/T)	221
R_2	<i>K</i> ₂ [CO2]	mol/(m ³ .s)	K ₂ =1.291x10 ⁵ e ^(-22976/T)	-173
R_3	K ₃ [CO] [O2] ^{0.5}	mol/(m ³ .s)	K ₂ =1.3x10 ⁸ e ^(-15094/T)	283

Summary of the present IB-LBM method

Density is updated from the equation of state:

$\rho = \frac{p_0 \overline{W}}{RT} = \frac{\rho_0 T_0 \sum Y_{0,i} / W_i}{T \sum Y_i / W_i}$

Present IB-LBM method are fully coupled for gas-solid combustion.

2.5 Computation Setup

• Hot air flow past an reactive char particle with constant surface temperature.

Makino, A, Toshikazu N, Katsuya K. Combustion rates of graphite rods in the forward stagnation field with high-temperature airflow. *Combustion and flame* 2003, 132(4): 743-753.

Conventional

Present(improved)

Flow past single cylinder (Re=40)

References	Re = 1	Re = 40		Re = 200		
	CD	CD	Lw	CD	CL	St
Tritton [55]	10.92	1.62	-	-	-	-
Choi et al. [56]	-	1.52	2.25	1.36 ± 0.048	± 0.64	0.191
Le et al. [57]	-	1.58	2.59	1.38 ± 0.040	± 0.676	0.192
Park et al. [31]	12.00	1.54	-	1.35 ± 0.04	± 0.65	0.192
Kang & Hassan [16]	-	1.597	2.525	-	-	-
Wu & Shu [20]	-	1.565	2.31	1.349	-	0.193
DF	11.266	1.556	2.42	1.39 ± 0.047	± 0.720	0.198
IVC	11.278	1.551	2.40	1.360 ± 0.044	± 0.670	0.192
RKPM	11.277	1.551	2.40	1.364 ± 0.042	± 0.699	0.195
MDF ($NF = 20$)	11.279	1.551	2.40	1.364 ± 0.042	± 0.699	0.193
Present BTDF	11.277	1.551	2.40	1.364 ± 0.042	± 0.699	0.195

Note: C_D and C_L for Re = 200 are defined as $a \pm b$ with a mean value of a and a maximum deviation of b.

Non-slip boundary condition is satisfied.

DKT of two particles sedimentation

Rayleigh-Taylor instability of 504 particles

• Validation of char particle combustion

Simulation results agree well with previous experiments and simulations.

- Variables around burning particle surface
- > Large density fluctuations exist ($(\rho/\rho_0)_{max}$ > 0.65) around particle surface due to non-uniform distribution of species concentration and temperature.
- > High particle surface temperature T_s causes high density fluctuations ρ/ρ_0 .

Large density gradient and fluctuations can be simulated.

• Distributions of variables along particle surface

Distributions of reaction rates around particle surface

Distributions of mass fractions around particle surface

• Distributions of variables along particle centerline

The actual distributions of species concentrations are much more complex than that obtained by conventional single film model (SFM) or double film model (DFM).

• Drag force first increase and then decrease

4. Conclusions

- A new fully coupled IB-LBM method for gas-solid combustion has been presented.
- Three flame modes and large density fluctuations are simulated successfully.
- Char combustion is dominated by oxidation reaction to reduction reaction as particle temperature increases.
- Spatial distributions of species concentrations are much more complex than traditional single film model (SFM) and double film model (DFM).
- Drag force first increases and then decrease as the CO flame gradually detached.
- Future work: different inlet velocity, different inlet oxygen concentration, moving particle.....

Thanks !

