

Minimum spouting velocity of fine particles in fountain confined conical spouted beds

Presenter: Mikel Tellabide

M. Tellabide, I. Estiati, A. Pablos, H. Altzibar, R. Aguado, M. Olazar

Dpt. of Chemical Engineering, University of the Basque Country

e-mail address: mikel.tellabide@ehu.eus

INTRODUCTION	EXPERIMENTAL	RESULTS	CONCLUSIONS	

SPOUTED BED

VS.

- Suitable for coarse particle treatment.
- Great versatility in the gas flow rate:
 - Particles of irregular texture.
 - ► Wide size distribution.
 - Sticky solids.

FLUIDIZED BED

FLUIDIZATION XVI May 26 - 31, 2019 - Guilin Shangri – La Hotel - Guilin – China

FLUIDIZATION XVI May 26 - 31, 2019 - Guilin Shangri – La Hotel - <u>Guilin – China</u>

SPOUT

FOUNTAIN

ANNULUS

[1] M. Olazar, M.J. San Jose, A.T. Aguayo, J.M. Arandes, J. Bilbao, Stable operation conditions for gas-solid contact regimes in conical spouted beds, Ind. Eng. Chem. Res. 31 (1992) 1784-1792. doi:10.1021/ie00007a025.

[2] N. Epstein, J. Grace, Spouted and Spout-Fluid Beds Fundamentals and Applications, Cambridge, 2011

[1] M. Olazar, M.J. San Jose, A.T. Aguayo, J.M. Arandes, J. Bilbao, Stable operation conditions for gas-solid contact regimes in conical spouted beds, Ind. Eng. Chem. Res. 31 (1992) 1784-1792. doi:10.1021/ie00007a025.

[2] N. Epstein, J. Grace, Spouted and Spout-Fluid Beds Fundamentals and Applications, Cambridge, 2011

	ODUCT	
INIR(I()N

FLUIDIZATION XVI

Draft tubes

- System hydrodynamics and solid circulation flow rate are changed.
- High fountains.

Nonporous

Low gas flow rates must be used

FOUNTAIN CONFINER

Fountain confiner...

- ...allows stable operation with fine particles without draft tube.
- ...increases the upper limit of the residence time of the gas and improves gassolid contact.
- ...avoids particle entrainment, allowing operation at high gas flow rates with and without draft tubes.

FLUIDIZATION XV

AIMS

- To ascertain the validity of the correlations in the literature for calculating the minimum spouting velocity in fountain confined conical spouted beds with fine particles.
- In case there is no valid correlation, modifications in those of best fit will be carried out.

FLUIDIZATION

Significant factors in the minimum spouting velocity

Analysis of variance

Configuration	Material	Significance order
With out droft tub o	Sand	$H_0 >> H_0^*D_F > D_F > d_p > D_0$
without draft tube	Sawdust	$D_0 > H_0 > \gamma > H_0^* D_0$
	Both materials	$H_0 > \rho_s > D_F^*H_0 > H_0^*\rho_s$
	Sand	$H_0 >> d_p > D_0 > D_T > D_0^*D_T > D_0^*D_T > D_T^*d_p$
Open-sided draft tube	Sawdust	$H_0 > AR > \gamma > D_0 > D_T > D_F^*H_0$
	Both materials	$\rho_{s} >> H_{0} > d_{p} > D_{0} > D_{0}^{*}\rho_{s} > AR$
	Sand	$H_0 >> d_p > D_0 > \gamma > L_H > D_F$
Nonporous draft tube	Sawdust	$H_0 > D_0 > D_T > \gamma > L_H >> D_F^*H_0$
	Both materials	$\rho_{s} > H_{0} >> d_{p} > L_{H} > \gamma > D_{T}^{*}d_{p}$

FLUIDIZATION XVI May 26 - 31, 2019 - Guilin Shangri – La Hotel - Guilin – China

Significant factors in the minimum spouting velocity

FLUIDIZATION XVI

May 26 - 31, 2019 • Guilin Shangri – La Hotel • Guilin – China

EXPERIMENTAL

Author	Correlation	Eq.	Configuration
Gorshtein and Mukhlenov	$(\text{Re}_0)_{\text{ms}} = 0.174 \text{Ar}^{0.5} (D_b/D_0)^{0.25} (\tan(\gamma/2)^{-1.25})$	1	Conical spouted bed
Tsvick et al.	$(\text{Re}_0)_{\text{ms}} = 0.4 \text{Ar}^{0.52} (\text{H}_0/\text{D}_0)^{1.24} (\tan(\gamma/2)^{0.42})^{0.42}$	2	Conical spouted bed
Markowski and Kaminski	$(\text{Re}_0)_{\text{ms}} = 0.028 \text{Ar}^{0.57} (\text{H}_0/\text{D}_0)^{0.48} (\text{D}_c/\text{D}_0)^{1.27}$	3	Conical spouted bed
Olazar et al.	$(\text{Re}_0)_{\text{ms}} = 0.126 \text{Ar}^{0.5} (D_b/D_0)^{1.68} [\tan(\gamma/2)]^{-0.57}$	4	Conical spouted bed
Olazar et al.	$(\text{Re}_0)_{\text{ms}} = 0.126 \text{Ar}^{0.39} (D_b/D_0)^{1.68} [\tan(\gamma/2)]^{-0.57}$	5	Conical spouted bed
Saldarriaga et al.	$(\text{Re}_0)_{\text{ms}} = 0.126 \text{Ar}^{0.51} (D_b/D_0)^{1.37} (\tan(\gamma/2))^{-0.57}$	6	Conical spouted bed
Golsthan et al.	$(\text{Re}_0)_{\text{ms}} = 0.0965 A r^{0.67} (\text{H}_0/\text{D}_0)^{1.32} (\tan(\gamma/2))^{0.76}$	7	Conical spouted bed
Altzibar et al.	$(Re_0)_{ms} = 0.126Ar^{0.5}(D_b/D_0)^{1.68}(\tan(\gamma/2))^{-0.57}(A_0/A_T)^{0.3}$	8	Open-sided draft tube conical spouted bed
Saldarriaga et al.	$(Re_0)_{ms} = 0.272Ar^{0.5}(D_b/D_0)^{1.25}(\tan(\gamma/2))^{-0.57}(A_0/A_T)^{0.3}\emptyset^{0.274}$	9	Open-sided draft tube conical spouted bed

FLUIDIZATION XVI May 26 - 31, 2019 - Gullin Shangri – La Hotel - Guilin – China

Plain conical spouted beds (CSB)

Open-sided draft tube CSB

INTRODUCTION	EXPERIMENTAL	RESULTS	CO	NCLUSIONS			
Hydrodynamics correlations					F	26 - 31, 2019 - Guilin Shangri – La Hotel - Guilin – China	
Author	Corr	elation	Eq.	Configuration			
San José et	$u_{ms} = 0.126 A r^{0.5} \left(\frac{D_b}{D_c} \right)^{1.68}$	$\left(tan\left(\frac{\gamma}{2}\right)\right)^{-0.57} \left(\frac{H_0 - L_T}{H_0}\right)^{0.45}$		Nonporous draft tube			

San José et al.	$u_{ms} = 0.126Ar^{0.5} \left(\frac{D_b}{D_0}\right)^{1.68} \left(tan\left(\frac{\gamma}{2}\right)\right)^{-0.57} \left(\frac{H_0 - L_T}{H_0}\right)^{0.45} \\ \left(\frac{D_i}{D_i - D_T}\right)^{0.17}$	10	Nonporous draft tube conical spouted bed
Kmiec et al.	$(Re_0)_{ms} = 0.0137 A r^{0.71} (D_b/D_0)^{-0.55} (\varphi V_r/V_0)^{0.41} \gamma^{0.8}$ $\varphi = \frac{(h_{r0} - H_0)}{L_T}$	11	Nonporous draft tube conical spouted bed
Altzibar et al.	$(Re_0)_{ms} = 0.25 Ar^{0.5} (H_0/D_0)^{1.2} (L_H/D_0)^{0.3}$	12	Nonporous draft tube conical spouted bed
Saldarriaga et al.	$(Re_0)_{ms} = 0.5Ar^{0.5}(H_0/D_0)^{1.7}(L_H/D_0)^{0.1}\emptyset^{0.54}$	13	Nonporous draft tube conical spouted bed
			/

Nonporous draft tube CSB

Correlations of best fit in the literature

Best fit ...

INTRODUCTION	EXPERIMENTAL	

- The novel fountain confiner has proven to stabilize beds made up of fine particles (Geldart groups A and B) without any draft tube. Therefore, it is an essential element for the scaling up of the spouted bed technology to industrial level.
- As solid density, static bed height, particle diameter, aperture ratio and entrainment height are increased the minimum spouting velocity increases. Nevertheless, as the inlet diameter, contactor angle and confiner diameter are increased the minimum spouting velocity decreases.
- There is no a valid correlation in the literature to estimate the minimum spouting velocity for fountain confined conical spouted beds. Therefore, a new one has been developed for each configuration.

Minimum spouting velocity of fine particles in fountain confined conical spouted beds

Presenter: Mikel Tellabide

M. Tellabide, I. Estiati, A. Pablos, H. Altzibar, R. Aguado, M. Olazar

Dpt. of Chemical Engineering, University of the Basque Country

e-mail address: mikel.tellabide@ehu.eus