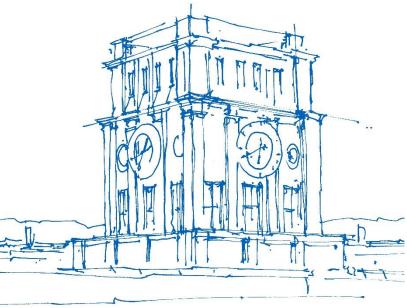


Thermochemical Energy Storage Employing Fluidized Bed Technology: Experimental Investigations with CaO/Ca(OH)₂ on a 21kWh Reactor

Manuel Würth¹

Moritz Becker¹

Elija Talebi1


Stephan Gleis¹

Annelies Vandersickel¹

Hartmut Spliethoff^{1,2}

¹Institute for Energy Systems, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching ²ZAE Bayern, Walther-Meissner-Strasse 6, 85748 Garching

FLUIDIZATION XVI GUILIN, CHINA MAY 28, 2019

Unrenturn der TVM

Agenda

Introduction:

Thermochemical Energy Storage Systems

Prelimenary Experiments: Fluidisation Test Rig, Lab Scale Reactor, TGA

Motivation & Open Questions: Heat Tranfser and Particle Stability

The Fluidized Bed Reactor FluBEStoR:

Setup and Experimental Procedure

Experimental Data

Institute for Energy Systems | Fluidization XVI | Manuel Würth

Thermochemical Energy Storage (TES)

Background & Potential

- First experimental investigations by Samms & Evans in 1967
- Water-based gas-solid-reactions advantageous \rightarrow e.g. CaO(s) + H₂O(g) \leftrightarrow Ca(OH)₂(s) + 104 kJ/mol
- Advantages:
 - Cheap storage material
 - No losses over time
 - High energy density
- Status Quo: Fixed bed and moving bed reactors [1]
- Current research: Moving bed [2] & fixed bed reactors [3]
- Advantages of fluidized bed reactors for TES:
 - · Improved mass- and heat transfer
 - superior mixing properties
 - Simple scalability & compact design
 - Continuous operation allows decoupling of reactor volume and capacity

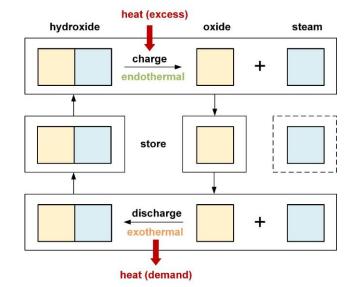


Illustration of the principle of thermochemical energy storage

Preliminary Experiments

Fluidization test rig with heat transfer probe

- Cylindrical columns (glass) with ID of 140 mm
- Dehumidified Nitrogen at ambient temperature as fluidization agent
- Overall perimeter heat transfer probe (OP-HTP), cp. [4,5]

Lab-scale fixed bed reactor

- Nitrogen and steam supply (direct evaporator)
- Radial flow trough porous material container
- Approx. 300 ml of storage material
- Temperature and pressure measurement

TGA unit

- Investigation of reaction kinetics
- Characterization and improvement of materials

Motivation & Open Questions

Heat-Transfer and Particle Stability in the Fluidized Bed

Heat Transfer

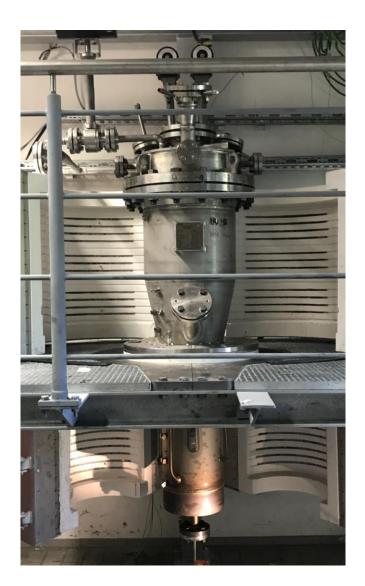
- Has been identified as limiting factor for overall process [6]
- Successful measurements in fluidized bed cold model (ambient conditions)

Cycle Stability

- Cycle stability so far not or hardly proven in literature
- Comminution processes in the process through three aspects:
 - Induced by chemical reaction
 - Induced by thermal stress
 - Mechanical forces in fluidized bed

Combination

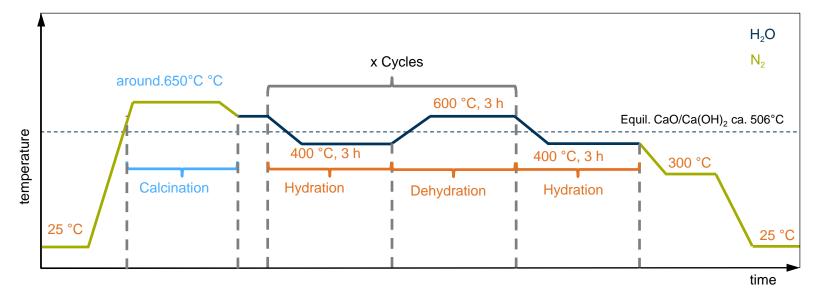
- Small quantity of fine materials leads to improvement of heat transfer temperature (higher collision factor \rightarrow lower contact time)
- Too high a proportion of fine materials results in deterioration of heat transfer temperature (defluidisation)


Definition of optimum operating point with specific fine fraction

Conclusion

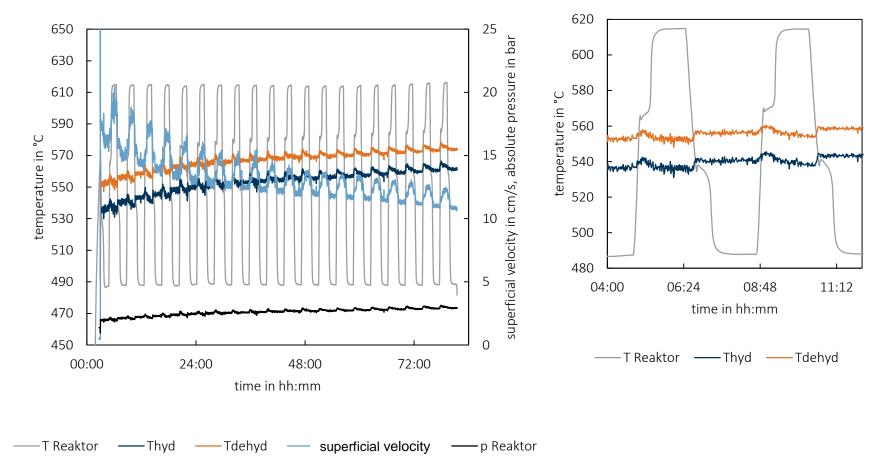
- Particle stability for long term/high cycle experiments
- Estimation of heat transfer coefficients under operating conditions

FluBEStoR


- Mounting plate with insulation ring
- Reactor torso
 - o Temperature measurements
 - $\circ\,$ Gasinlet, gasbox and gas distributor plate
 - Flange for supplying bulk material
- Reactor-head
 - Sintered metal filter cartridges
 - \circ Gasoutlet
 - Suction lance for solid sampling
 - Flange for material input in continuous operation mode
- Cooling coil (4,4 kW)
- Radiation furnace
 - 14 kW top
 - 40 kW bottom

Exemplary FluBEStoR-Experiment

- "In-house" Calcination of CaCO₃ at around 650°C in pure nitrogen \rightarrow stable CaO
- One "Cycle" consists of complete hydration and dehydration
- Conversion close to chemical equilibrium is "gentle"
- Reaction itself is limited by heat input and -output
- Material analytics: Particle size analysis, TGA/ignition loss, scanning electron microscopy,


BET, particle- & bulk density

Institute for Energy Systems | Fluidization XVI | Manuel Würth

Experimental Data

20.5-cycle experiment on lab scale reactor

Thank you for your attention!

Manuel Würth, M.Sc. manuel.wuerth@tum.de www.es.mw.tum.de

Supported by:

Funded by the German Federal Ministry of Economic Affairs and Energy (BMWi) under the funding code 03ET1599A.

References

- [1] Schmidt, Matthias; et al.: Experimental results of a 10 kW high temperature thermochemical storage reactor based on calcium hydroxide. In: Appl. Therm. Eng. 62 (2), S. 553–559, 2014
- Schmidt, Matthias; et al.: Development of a moving bed pilot plant for thermochemical energy storage with CaO/Ca(OH)2.
 In: AIP Conference Proceedings 1734 (1), S. 50041, 2016
- [3] Rougé, Sylvie; A. Criado, Yolanda; Soriano, Olivier; Abanades, J. Carlos: Continuous CaO/Ca(OH)2 Fluidized Bed Reactor for Energy Storage: First Experimental Results and Reactor Model Validation, Ind. Eng. Chem. Res., 56(4), pp. 844-852, 2017
- [4] Ostermeier, P., Vandersickel, A., Becker, M., Gleis, S. & Spliethoff, H., Hydrodynamics and heat transfer around a horizontal tube immersed in a Geldart B bubbling fluidized bed. International Journal of Computational Methods and Experimental Measurements, 6(1), pp. 1–15, 2017. IN PRESS
- [5] Di Natale, F., Bareschino, P. & Nigro, R., Heat transfer and void fraction profiles around a horizontal cylinder immersed in a bubbling fluidised bed. International Journal of Heat and Mass Transfer, 53(17–18), pp. 3525–3532, 2010.
- [6] Angerer, M., Djukow, M., Riedl, K., Gleis, S., and Spliethoff, H., 2018, "Simulation of Cogeneration-Combined Cycle Plant Flexibilization by Thermochemical Energy Storage," ASME J. Energy Resour. Technol., 140, p. 20909.

For additional literature on reactor see:

Wuerth M, Becker M, Ostermeier P, Gleis S, Spliethoff H. Development of a Continuous Fluidized Bed Reactor for Thermochemical Energy Storage Application. ASME. J. Energy Resour. Technol. 2019;141(7):070710-070710-6. doi:10.1115/1.4043629