A Novel Method for Gas-to-Particulate Mass Transfer Measurements in Fluidized Beds

Anna Köhler¹, Antonio Soria Verdugo²,

David Pallarès¹, Filip Johnsson¹

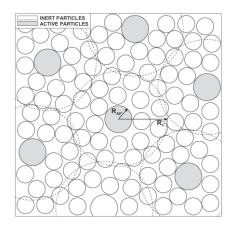
1) Dept. of Space, Earth and Environment, Chalmers University of Technology

2) Dept. of Thermal and Fluid Engineering, University Carlos III of Madrid

May 29th, 2019 FLUIDIZATION XVI Guilin Shangri-La Hotel, Guilin, China

IMPORTANCE OF MASS TRANSFER IN FBS

Large variety of FB applications

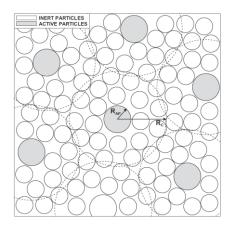

- Particle classification
- Pneumatic transport
- Drying and coating
- Catalytic processes
 - Catalytic cracking
 - Polymerization processes
- Thermal processes
 - Gasification, Combustion (CLC, OCAC)
 - Thermal cracking

Mass transfer as key mechanisms in most FB applications

IMPORTANCE OF MASS TRANSFER IN FBS

Understanding mixing and mass transfer

1) Gas-to-bed solids mass transfer Mixture of inert/active bed material

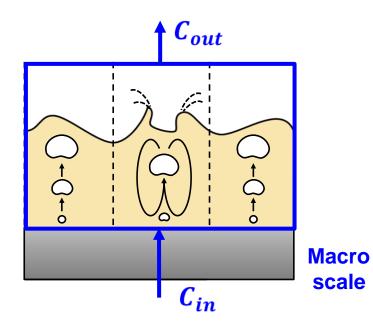

Scala F. 2013. Chemical Engineering Science. 91, (90–101)

2) Gas-to-bed solids mass transfer Whole bed material is active $\frac{dm}{dt} = kA\left(C_{\infty} - C_p(t)\right)$ C_{out} Macro scale

IMPORTANCE OF MASS TRANSFER IN FBS

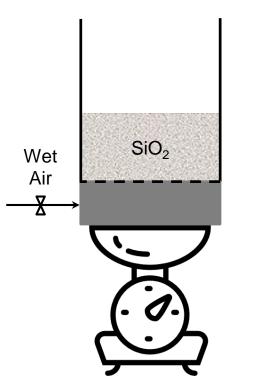
Understanding mixing and mass transfer

1) Gas-to-bed solids mass transfer Mixture of inert/active bed material



Scala F. 2013. Chemical Engineering Science. 91, (90–101)

2) Gas-to-bed solids mass transfer Whole bed material is active $\frac{dm}{dt} = kA\left(C_{\infty} - C_p(t)\right)$ Cout \boldsymbol{C}_{∞} Macro scale Micro scale


ΑιΜ

Development of a method for the measurement of macroscopic interphase mass transfer in a fluidized bed.

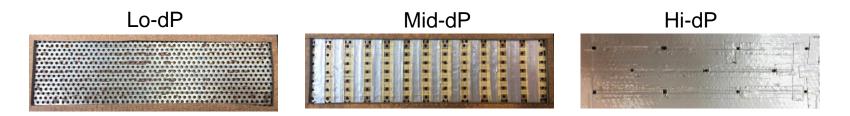
EXPERIMENTAL SETUP

Setup at UC3 Madrid

- Cross section of the bed: 5×20 cm²
- Measurement accuracy: 0.01 g, 7 Hz
- Measurement time: ~ 45 min
- Inlet concentration: ~ 80% RH
- Varying
 - Fluidization
 - Bed height
 - Distributor pressure drop

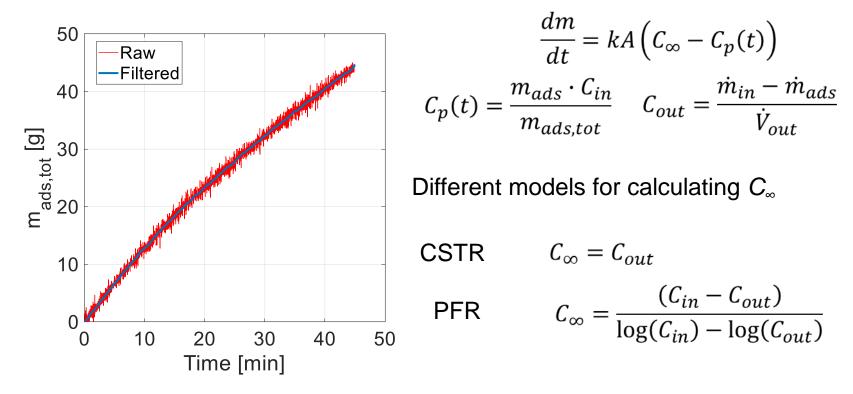
EXPERIMENTAL SETUP

Setup at UC3 Madrid


- Cross section of the bed: 5×20 cm²
- Measurement accuracy: 0.01 g, 7 Hz
- Measurement time: ~ 45 min
- Inlet concentration: ~ 80% RH
- Varying
 - Fluidization
 - Bed height
 - Distributor pressure drop

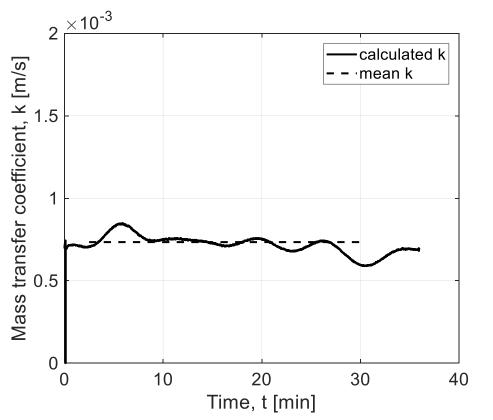
EXPERIMENTAL SETUP

Measurement setup at UC3 Madrid


Silica gel with wet air Particle size: ~750 µm Bulk density: ~1320 kg/m³ Min fluidization: 0.2 m/s

Low bed (0.5 kg, 4 cm)
$$\begin{pmatrix} 1.5 \times U_{mf} \\ 2.0 \times U_{mf} \end{pmatrix}$$

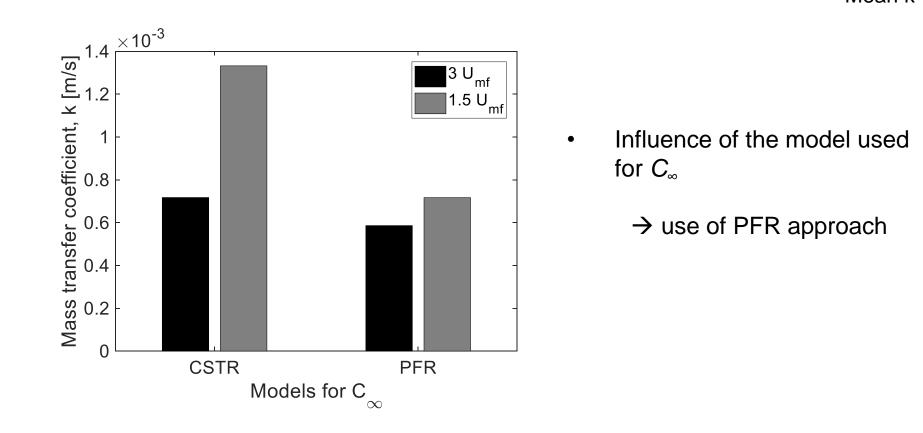
High bed (1.0 kg, 8 cm) $\begin{pmatrix} 1.5 \times U_{mf} \\ 2.0 \times U_{mf} \\ 3.0 \times U_{mf} \end{pmatrix}$ Lo-dP
Hi-dP



METHOD

Measurement of mass of FB unit

METHOD


High bed 3.0×U_{mf} PFR

- Finding time interval, where transport is mass transfer dependent
- Mean over time interval

CHALMERS UNIVERSITY OF TECHNOLOGY

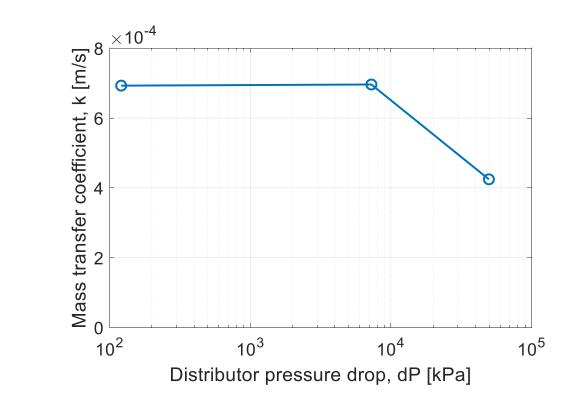
RESULTS

High bed Mean k

RESULTS

Low bed (0.5 kg, 4 cm) High bed (1.0 kg, 8 cm)

Influence of the


- fluidization ratio
- bed mass/bed height

12

1.5 ^{×10⁻³} -B-high bed -O-low bed Mass transfer coefficient, k [m/s] 0.5 0 0 2 3 1 4 U/U_{mf} [-]

RESULTS

High bed 3.0×U_{mf}

Influence of pressure drop over distributor

CONCLUSIONS

- A method to measure the macroscopic mass transfer coefficient in a BFB was developed.
- Trends observed when changing experimental parameters
 - Fluidization: $U_0 \uparrow \rightarrow k \downarrow$
 - Bed height: $H_0 \uparrow \rightarrow k \downarrow$
 - Pressure drop: $\Delta P \uparrow \uparrow \rightarrow k \downarrow$

FUTURE WORK

- Approach to calculate micro scale mass transfer coefficient with help of CFD modelling
- Measurements with mixture of inert/active bed material
- Use of fluid-dynamically down-scaled material coated with silica gel particles

Anna Köhler anna.koehler@chalmers.se