
Simulation of Proppant Transport in Fractures with DNS-Derived Drag Laws

Xiaoqi Li and Xiaolong Yin Petroleum Engineering Department Colorado School of Mines

> COLORADOSCHOOLOFMINES. EARTH • ENERGY • ENVIRONMENT

Fluidization XVI, May 26-31, 2019

Hydraulic fracturing and proppant transport

COLORADOSCHOOLO

EARTH . ENERGY . ENVIRONMEN

Drag force in Euler-Euler model

• Momentum equation in MFIX two-fluid model

Fluid phase

$$\frac{\partial}{\partial t} \Big[(1-\phi) \rho_f \mathbf{u}_f \Big] + \nabla \cdot \Big[(1-\phi) \rho_f \mathbf{u}_f \mathbf{u}_f \Big] = \nabla \cdot \mathbf{\sigma}_f + (1-\phi) \rho_f \mathbf{g} - \mathbf{I}_{f \to p}$$

Fluid stress
Solid phase
$$\frac{\partial}{\partial t} \Big(\phi \rho_p \mathbf{u}_p \Big) + \nabla \cdot \Big(\phi \rho_p \mathbf{u}_p \mathbf{u}_p \Big) = \nabla \cdot \mathbf{\sigma}_s + \phi \rho_s \mathbf{g} + \mathbf{I}_{f \to p}$$

Solid stress

Fluid-particle interaction includes generalized buoyancy, **drag**, lift, virtual mass, etc.

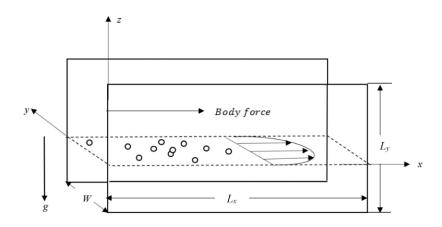
PETROLEUM ENGINEERING

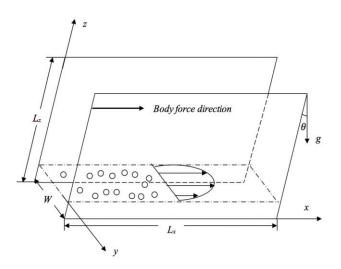
Common drag closures for monodisperse particle suspensions

Stokes drag: Single particle, zero ReSchiller-Naumann:
Single particle, finite Re
$$\mathbf{F}_{f \rightarrow p} = 3\pi\mu d \left(\mathbf{u}_{f} - \mathbf{u}_{p} \right) \implies \beta = 18\phi\mu/d^{2}$$
Schiller-Naumann:
Single particle, finite ReWen-Yu drag
Particles setting in groupsGidaspow drag =
Wen-Yu ($\phi < 0.2$)
or Ergun ($\phi > 0.2$)HKL (Hill-Koch-Ladd)
BVK (Beetstra-van der
Hoef-Kuipers)Ergun equation
Flow through dense
particle assembliesSchiller-Naumann:
Single particle, finite Re

Need for drag closures for proppant transport

- Proppant transport always occurs in **narrow** fractures
- Fractures can be **inclined**
- Settling velocity may be affected by **cross flow**
- Fracturing fluid can be **non-Newtonian**
- Proppants can be **non-spherical**
- Proppants are **polydisperse**
- Fracture surfaces are **rough**


We considered three of the above effects, and derived new drag laws using DNS data


DOE Mineback experiments N. R. Warpinski et al. (1981)

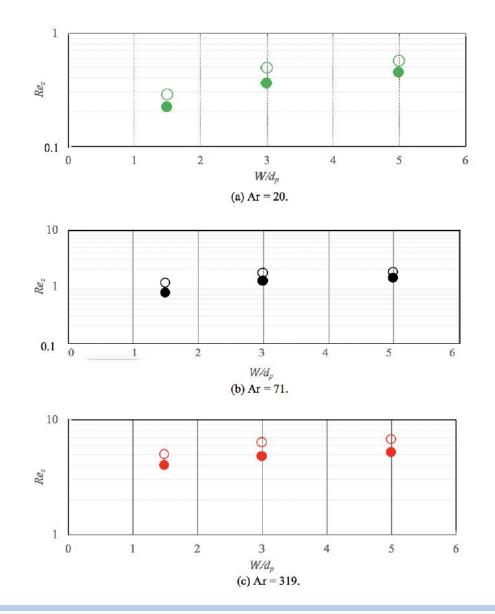
Setup of LB DNS

• Vertical fractures

x, *z*: periodic boundaries *y*: solid wall **g**: along *z x*: direction of cross flow L_x/d and L_z/d : about 10 Particle is resolved by 10 LB grid • Inclined fractures

Same as left (vertical) except that **g**: has an angle to the z

Dimensionless groups

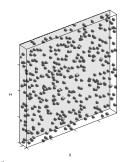

Archimedes number	$\operatorname{Ar} = \frac{gd^{3}\rho_{f}\left(\rho_{p}-\rho_{f}\right)}{\mu^{2}}$	20, 71, 319	
Density ratio	$\rho^* = \frac{\rho_p}{\rho_f}$	1.1, 2.0, 2.5	Most these dimensionless numbers are realistic, except Re_x . Real Re_x can be as high as 10^4 .
Gap-to-particle size ratio	$W^* = \frac{W}{d}$	1.5, 3.0, 5.0	
Reynolds number of cross flow	$\operatorname{Re}_{x} = \frac{\rho_{f} \langle u_{x} \rangle W}{\mu}$	1, 3, 10, 30	
Solid volume fraction	ϕ	0.05 to 0.20	
Inclination angle	heta	0°, 15°, 45°, 75°	

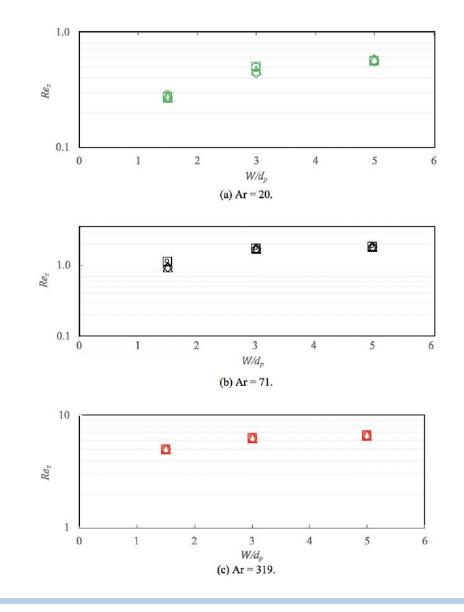
Vertical fractures – results

Clear trends / effects

- Settling velocity increases with increasing *W*^{*}
- Settling velocity increases with increasing Ar
- Settling velocity decreases with increasing φ

Re_z: Settling Reynolds number Open symbol: $\phi = 0.05$ Filled symbol: $\phi = 0.10$ $\rho^* = 1.1$, Re_x = 1.0



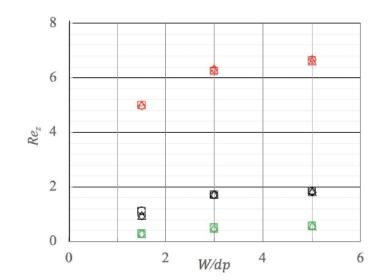

Vertical fractures – results

No clear trends

• Settling velocity is nearly independent of Re_x in the range (1, 30)

Re_z: Settling Reynolds number Various symbols: different Re_x $\rho^* = 1.1, \phi = 0.05$

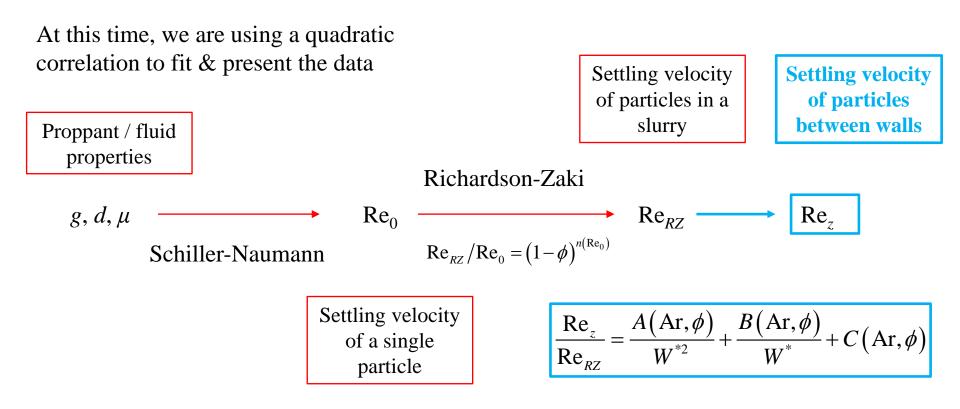
COLORADOSCHOOLO

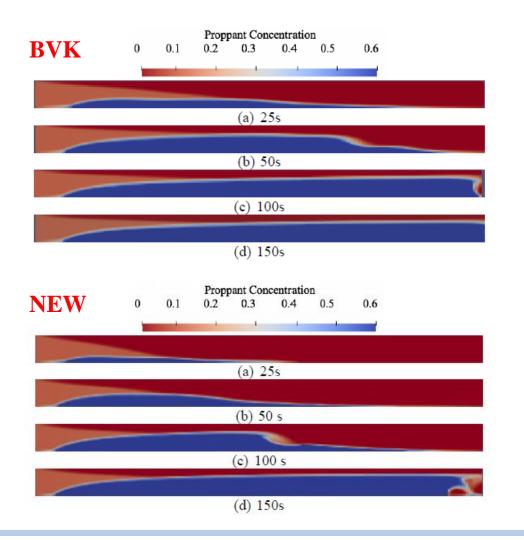

EARTH . ENERGY . ENVIRONME

Vertical fractures – results

No clear trends

Settling velocity is nearly independent of ρ* once Ar is fixed


Re_z: Settling Reynolds number Various symbols: different ρ^* $\phi = 0.05$, Re_x = 1.0


Green: Ar = 20 Black: Ar = 71 Red: Ar = 319

COLORADOSCHOOLOFMINES. EARTH • ENERGY • ENVIRONMENT

Vertical fractures – correlation for the settling velocity

MFIX simulations with BVK law and the new drag law

Simulation parameters: Dimensionality = 2 Domain = 0.1 m × 1 m d = 0.3 mm, $\mu = 1$ cp, g = 9.8 m/s² W = 1.5 mm, $\rho^* = 2.0$, $\phi = 0.10$ $\langle u_x \rangle = 0.5$ m/s

In the new drag law, proppant bank develops less rapidly primarily because the effect of walls. In terms of height, the new drag law predicts a slightly taller proppant bank

Verification – experiment of Patankar et al. (2003)

Patankar et al., 2003. Int J Multiph Flow 29: 475–494.

- Experimental parameters
 - $-L_x = 244 \text{ cm}, L_z = 30.4 \text{ cm}, W = 8 \text{ mm}$
 - Proppant 20/40 Ottawa sand (0.6 mm), $\rho = 2650 \text{ kg/m}^3$
 - Fluid viscosity = 1 cp
 - Slurry rate = $284 \text{ cm}^3/\text{s}$, proppant volumetric rate = $40 \text{ cm}^3/\text{s}$
- Dimensionless numbers

- Ar = **3496**, Re_x = **960**, $\rho^* = 2.65$, $W^* =$ **13**, $\phi = 0.14$

- Results
 - Experimentally measured height of proppant bank = 28.2 cm
 - MFIX with BVK 23.3 cm
 - MFIX with new drag law -27.3 cm

Some numbers are clearly outside the range of DNS data

New drag law still generated more accurate prediction

Summary

- Solid walls significantly hinder the settling velocity
- Cross flow (with moderate Re) does not seem to affect settling velocity
- Particle-fluid density ratio does not seem to affect settling velocity
- DNS-derived drag law when substituted into MFIX gave better prediction in the height of proppant bank compared to default drag laws

