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Hydraulic fracturing and proppant transport
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Drag force in Euler-Euler model

* Momentum equation in MFIX two-fluid model

Fluid phase
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Solid phase Fluid-particle

) > Interaction
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Solid stress

Fluid-particle interaction includes generalized
buoyancy, drag, lift, virtual mass, etc.
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Common drag closures for monodisperse particle
suspensions

Stokes drag: Single particle, zero Re

Schiller-Naumann:
F._,, =3mud (uf —up) > B =18¢u/d? Single particle, finite Re

Wen-Yu drag n - -
Particles Setting in groups GId&SpOW drag = HKL (HI”-KOCh-Ladd)
| Wen-Yu (¢ <0.2)
Ergun equation or Ergun (¢ > 0.2) BVK (Beetstra-van der
Flow through dense ) Hoet-Kuipers)
particle assemblies
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Need for drag closures for proppant transport

* | Proppant transport always occurs in narrow fractures
« | Fractures can be inclined

* | Settling velocity may be affected by cross flow
 Fracturing fluid can be non-Newtonian

« Proppants can be non-spherical

» Proppants are polydisperse

» Fracture surfaces are rough

We considered three of the above effects, and
derived new drag laws using DNS data

DOE Mineback experiments
N. R. Warpinski et al. (1981)
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Setup of LB DNS

 Vertical fractures * Inclined fractures

g

X, Z: periodic boundaries

y: solid wall

g: along z

X: direction of cross flow

L./d and L,/d: about 10

Particle is resolved by 10 LB grid

Same as left (vertical) except that
g: has an angle to the z
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Dimensionless groups

: d’ —
Archimedes number Ar=2 2 ('[Zp p1) 20, 71, 319
y7;
: : ~_Pp Most these
Density ratio p = S 1.1,2.0,25 dimensionless
numbers are
Ga_p-to-partlcle size W = W 1530 50 realistc,
ratio d except Re,.
Real Re, can
Reynolds number of Re, = pi (U)W 1,3, 10, 30 be as high as
cross flow H 10%.
Solid volume fraction ¢ 0.05t0 0.20
Inclination angle 0 0°, 15°, 45°, 75°
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Vertical fractures — results

Clear trends / effects

 Settling velocity increases
with increasing W™

 Settling velocity increases
with increasing Ar

 Settling velocity decreases
with increasing ¢

Re,: Settling Reynolds number
Open symbol: ¢ = 0.05

Filled symbol: ¢ = 0.10
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Vertical fractures — results e
=
. a
No clear trends L T
« Settling velocity is nearly w
Independent of Re, in the - a
range (1, 30) g 8
Re,: Settling Reynolds number on | : 2 z ; s 6
Various symbols: different Re, Wi, '
p* =11, ¢=0.05 ® Ar=71
(c)ArV‘;/‘.J;w.
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Vertical fractures — results

No clear trends ;
 Settling velocity is nearly . 8 "
independent of p™ once Ar 5
Is fixed g 4
Re,: Settling Reynolds number . & @
Various symbols: different p* ; | a
¢ =0.05 Re, =1.0 Y > w4 .
Green: Ar =20
Black: Ar=71
Red: Ar =319
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Vertical fractures — correlation for the settling velocity

At this time, we are using a quadratic
correlation to fit & present the data

Proppant / fluid
properties

Settling velocity
of particles in a
slurry

Settling velocity
of particles
between walls

g,d, u > Re,
Schiller-Naumann

Richardson-Zaki

[

Rey, /Re, = (1-¢)""

Re

Settling velocity Re A(Ar B(Ar
of a single L= ( *2¢)+ ( *¢)+C(Ar,¢)
particle Reg, W W
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MFIX simulations with BVK law and the new drag law

Proppant Concentration
VK 0 01 02 03 04 05 06

— Simulation parameters:
IR jensionality =2
Domain=0.1mx1m
505 d=0.3mm,u=1cp, g=9.8m/s?
W=15mm, p"=2.0,¢=0.10
<u,>=0.5m/s

vy)

¢) 100s

(d) 150s

Proppant Concentration

NEW 0 01 02 03 04 05 06

— ' oe— In the new drag law, proppant
_ e bank develops less rapidly
— primarily because the effect of
(b) 50 s walls. In terms of height, the
. new drag law predicts a slightly
— taller proppant bank

(c) 100 s

(d) 150s
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Verification — experiment of Patankar et al. (2003)

Patankar et al., 2003. Int J Multiph Flow 29: 475-494.

« EXxperimental parameters

— L, =244 cm, L,=30.4cm, W=8 mm

— Proppant 20/40 Ottawa sand (0.6 mm), p = 2650 kg/m?

— Fluid viscosity = 1 cp

— Slurry rate = 284 cm?®/s, proppant volumetric rate = 40 cm?3/s
* Dimensionless numbers

— Ar =3496, Re, =960, p" =2.65, W =13, ¢ =0.14 Some numbers are
clearly outside the
* Results range of DNS data
— Experimentally measured height of proppant
bank = 28.2 cm New drag law still
— MFIX with BVK — 23.3 cm generated more.
accurate prediction

— MFIX with new drag law — 27.3 cm
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Summary

» Solid walls significantly hinder the settling velocity
» Cross flow (with moderate Re) does not seem to affect settling velocity
 Particle-fluid density ratio does not seem to affect settling velocity

» DNS-derived drag law when substituted into MFIX gave better prediction
in the height of proppant bank compared to default drag laws
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