Applications of Tribo-electric Probes in Fluidized Beds

Yuan Li, Cedric Briens, Franco Berruti, Francisco J. Sanchez Careaga, Majid Jahanmiri

Institute for Chemicals and Fuels from Alternative Resources The University of Western Ontario

May 26th, 2019

yli2739@uwo.ca

Bubble Characterization Methods in Gas-Solid Fluidized Bed

Solution: Tribo-probes

Top view

Side view

✓ High V_g (up to 2 m/s), High temperature (limited by metal) ✓ High bed density (1500 kg/m^3), Large equipment

Applications of Tribo-probes

- Slugging check
- Bubble flow profile
- Bubble velocity

With Gas-Liquid Injection:

Jet penetration

Due to confidential check from Syncrude:

- Liquid distribution (see full paper)
- Local bogging (see full paper)

Experimental set-up

To modify gas bubble distribution

Measuring Systems

Raw Signal Comparison (for Even Case)

Bubble Flow Profile

Comparison Tribo-probes and Radioactive Transmission

Tribo. $\frac{q_{bi}}{\overline{q_b}} = \frac{Local \ bubble \ volumetric \ flux}{cross-section \ average}$: bubble flowrate profile Radioactive. $\frac{x_{bi}}{\overline{x_b}}$: bubble concentration profile

Consistent results

Bubble Flow Profile — spray level 3 Gas Distributions with (▶, ▶ ◄) and without (•) Baffle

Asymmetrical baffle successfully concentrates gas bubbles

 $V_g = 1 m/s$

Slugging Check

Bubble Velocity: $U_b = \frac{\Delta z_{probes}}{\Delta t_{lag}}$ Δt_{lag} from cross-correlation between Rows

Gas-Liquid Jet Penetration

Conclusion

Tribo-electric probe measurements provide:

- Bubble flow profile
- Jet penetration
- Liquid distribution (see full paper)
- Local bogging (see full paper)

Cross-correlation between probes provides:

- Slugging detection
- Bubble velocity

Acknowledgments

NSERC/Syncrude/ExxonMobil Industrial Research Chair in Fluid Coking Technologies

References

Briens, L. A., & Briens, C. L. (2002). Cycle detection and characterization in chemical engineering. AIChE journal, 48(5), 970-980.

Li, Lingchao, "Effect of Local Bed Hydrodynamics on the Distribution of Liquid in a Fluidized Bed" (2016). *Electronic Thesis and Dissertation Repository*. 4120.

Jahanmiri, Majid, "Effect of a baffle on gas bubbles flow patterns and the distribution of liquid injected into gas-solid fluidized beds" (in press).

Ariyapadi, S., Berruti, F., Briens, C., McMillan, J., & Zhou, D. (2004). Horizontal penetration of gas-liquid spray jets in gas-solid fluidized beds. International Journal of Chemical Reactor Engineering, 2(1).