(688a) Predicting Therapeutic Efficacy on Renal Fibrosis in Diabetes: A Mathematical Model
AIChE Annual Meeting
2022
2022 Annual Meeting
Computing and Systems Technology Division
Applied Math for Biomedical Systems
Friday, November 18, 2022 - 8:00am to 8:19am
First, we used experimental studies to create a network structure that represents the process by which hyperglycemia in diabetes stimulates inflammation in the kidney that then results in renal fibrosis. The interactions between key resident and immune cells with the inflammatory and profibrotic molecules is incorporated to be able to accurately model the dynamics that results in fibrosis. The interactions are then formulated as a system of ordinary differential equations (ODEs) where production and degradation kinetics of molecular and cellular species is assumed to follow the mass conservation. Biomolecule-mediated activation and inhibition of processes is modeled using the commonly used approach of Michaelis-Menten kinetics. The resulting system of ODEs are then solved in MATLAB to obtain the population and concentration dynamics of the species considered. To validate our results, we gathered experimental data of renal fibrosis in the type I diabetic mice from the literature. We are currently in the process of modifying and restructuring our model to accurately reflect experimental observations.
Once we have validated our model, we plan to test the ability of our model to predict therapeutic efficacy of different drugs on renal fibrosis. Subsequently, our next step is to adapt the model for type I mice diabetes and then eventually for human diabetes. With increasing validation of our model, we are confident that our model can be used in the future in a clinical setting to non-invasively and accurately determine therapeutic efficacy on renal fibrosis.