(602g) Low Temperature Hydrogenation of Amine Captured CO2
AIChE Annual Meeting
2015
2015 AIChE Annual Meeting Proceedings
Advances in Fossil Energy R&D
Novel Approaches to CO2 Utilization
Wednesday, November 11, 2015 - 5:21pm to 5:42pm
Low-temperature Hydrogenation of Amine Captured CO2
Ji Su, Mi Lu, Lisha Yang, Hongfei Lin*
Chemical & Materials Engineering, University of Nevada, Reno, NV 89557, USA
Climate change resulting from the emission of CO2 has become a widespread concern in the recent years. Though various CO2 capture technologies have been proposed, chemical absorption and adsorption are currently believed to be the most suitable ones for post-combustion power plants.1 Carbon Capture and Storage (Sequestration) (CCS) is a promising technology that has the potential to address the 40% of emission emanating from large-point sources such as power plants.2–7 The utilization of CO2 as a raw material in the synthesis of chemicals and liquid energy carriers offers a direct way to mitigate the increasing CO2 build-up8,9 and catalytic reduction of CO2 to fuels or value added chemicals is one of the greatest challenges facing today's society.8–12 Recently, increasing efforts have been devoted to the transformation of CO2 into value added substances such as formic acid or formate, which can be conveniently obtained by hydrogenation of CO2 and is highly attractive as an important chemical used as preservative and antibacterial agent as well as a clean source for H2 generation.13–21
Herein, effective low temperature processes for hydrogenating amine captured CO2 to formate over supported transition metal nano-catalysts has been developed in this study. Five representative amine monoethanolamine (MEA), diethanolamine (DEA), Triethanolamine (TEA), 2-amino-2-methyl-1-propanol (AMP) and Piperazine (PZ) were used to capture CO2 and then the solution were conducted to hydrogenation reaction over different metal on carbon catalysts. The effect of amine structure and co-solvent was investigated. At the optimized reaction conditions, a high yield of formate, >99%, was achieved by the reduction of AMP captured CO2 over the carbon supported Pd nanoparticles catalyst. The stability of the Pd on carbon catalyst was tested and the possible reaction mechanism was proposed. The effects of amine structure, solubility, and functional group were profound on the conversion of amine-CO2 adducts. The yield of formates is highly dependent on the bicarbonate and alkyl carbonate ion intermediates in an solution of amine captured CO2.
References
(1) Yu, C.-H. Aerosol Air Qual. Res. 2012, 745–769.
(2) House, K. Z.; Harvey, C. F.; Aziz, M. J.; Schrag, D. P. Energy Environ. Sci. 2009, 2, 193–205.
(3) Stone, E. J.; Lowe, J. a.; Shine, K. P. Energy Environ. Sci. 2009, 2, 81–91.
(4) MacDowell, N.; Florin, N.; Buchard, A.; Hallett, J.; Galindo, A.; Jackson, G.; Adjiman, C. S.; Williams, C. K.; Shah, N.; Fennell, P. Energy Environ. Sci. 2010, 3, 1645–1669.
(5) Orr, Jr., F. M. Energy Environ. Sci. 2009, 2, 449–458.
(6) Goeppert, A.; Czaun, M.; Surya Prakash, G. K.; Olah, G. a. Energy Environ. Sci. 2012, 5, 7833–7853.
(7) Boot-Handford, M. E.; Abanades, J. C.; Anthony, E. J.; Blunt, M. J.; Brandani, S.; Mac Dowell, N.; Fernández, J. R.; Ferrari, M.-C.; Gross, R.; Hallett, J. P.; Haszeldine, R. S.; Heptonstall, P.; Lyngfelt, A.; Makuch, Z.; Mangano, E.; Porter, R. T. J.; Pourkashanian, M.; Rochelle, G. T.; Shah, N.; Yao, J. G.; Fennell, P. S. Energy Environ. Sci. 2014, 7, 130.
(8) Markewitz, P.; Kuckshinrichs, W.; Leitner, W.; Linssen, J.; Zapp, P.; Bongartz, R.; Schreiber, A.; Müller, T. E. Energy Environ. Sci. 2012, 5, 7281–7305.
(9) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43.
(10) Centi, G.; Quadrelli, E. A.; Perathoner, S. Energy Environ. Sci. 2013, 6, 1711–1731.
(11) Dorner, R. W.; Hardy, D. R.; Williams, F. W.; Willauer, H. D. Energy Environ. Sci. 2010, 3, 884.
(12) Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.; Pérez-Ramírez, J. Energy Environ. Sci. 2013, 6, 3112.
(13) Boddien, A.; Gärtner, F.; Federsel, C.; Sponholz, P.; Mellmann, D.; Jackstell, R.; Junge, H.; Beller, M. Angew. Chem. Int. Ed. Engl. 2011, 50, 6411–6414.
(14) Cai, Y.-Y.; Li, X.-H.; Zhang, Y.-N.; Wei, X.; Wang, K.-X.; Chen, J.-S. Angew. Chemie Int. Ed. 2013, 52, 11822–11825.
(15) Grasemann, M.; Laurenczy, G. Energy Environ. Sci. 2012, 5, 8171.
(16) Hull, J. F.; Himeda, Y.; Wang, W.-H.; Hashiguchi, B.; Periana, R.; Szalda, D. J.; Muckerman, J. T.; Fujita, E. Nat. Chem. 2012, 4, 383–388.
(17) Joó, F. ChemSusChem 2008, 1, 805–808.
(18) Loges, B.; Boddien, A.; Junge, H.; Beller, M. Angew. Chem. Int. Ed. Engl. 2008, 47, 3962–3965.
(19) Ojeda, M.; Iglesia, E. Angew. Chem. Int. Ed. Engl. 2009, 48, 4800–4803.
(20) Papp, G.; Csorba, J.; Laurenczy, G.; Joó, F. Angew. Chem. Int. Ed. Engl. 2011, 50, 10433–10435.
(21) Wang, Z.-L.; Yan, J.-M.; Ping, Y.; Wang, H.-L.; Zheng, W.-T.; Jiang, Q. Angew. Chem. Int. Ed. Engl. 2013, 52, 4406–4409.
(22) Mani, F.; Peruzzini, M.; Stoppioni, P. Green Chem. 2006, 8, 995–1000.
(23) Monrnz, B.; Pnrr-rp, A. S.; Plpnncurh, W.; Nrns, R. J. Am. Mineral. 1989, 74, 1152–1158.
(24) Wen, N.; Brooker, M. H. J. Phys. Chem. 1995, 99, 359–368.
(25) Pelkie, J. E.; Concannon, P. J.; Manley, D. B.; Poling, B. E. Ind. Eng. Chem. Res. 1992, 39, 2209–2215.