(34b) Identifying CQAs of 3D Printed Extended-Release Tablets through the Optimization of Formulation and 3D Geometric Variables
AIChE Annual Meeting
2018
2018 AIChE Annual Meeting
Pharmaceutical Discovery, Development and Manufacturing Forum
Innovations in Pharmaceutical Discovery, Development, and Manufacturing
Sunday, October 28, 2018 - 3:51pm to 4:12pm
Diclofenac sodium, an NSAID, was used as a model drug. Drug-loaded carbopol based pastes were prepared by compounding Unguator using Avicel PH101, Avicel PH105 and spray dried lactose as diluents, glycerol as plasticizer and polyplasdone as the disintegrant. The pastes were extruded into 3D printed tablets using EnvisionTec 3D Bioplotter. The formulation variables included percentages incorporated of the drug and various soluble and insoluble excipients. The 3D geometric variables included nozzle diameter, weaving angle and distance between filaments. The 3D printed tablets were characterized in terms of drug assay and content uniformity, disintegration time, percent friability, tensile and axial breaking strengths, porosity, drug release characteristics and the uniformity of dosage units (thickness, weight and diameter).
Changing the formulation variables required variating in printing pressure from 0.5 bars to 4.5 bars to maintain a printing rate of 10 mm/secs for all pastes. Pre-flow and post-flow times of 0.1 seconds were required to avoid gaps in the internal structures and/or contours. The soluble components of the formulations affected the radial strength of the 3D tablets. However, the weaving parameters were more important to control the axial strength. The results indicate that 3D weaving pattern has a minimal influence on the porosity of the filament deposited while printing. Nevertheless, the distance between the printed filaments necessary to create the structure, determined the porosity of tablets. Dissolution results demonstrated that the weaving angle and lactose loading negatively affected the percent of drug release after 8 hours. Conversely, the drug release rate increased from 75% to 95% by increasing the distance between filaments from 0.5 mm to 1.5 mm, respectively.
In summary, this study demonstrated that formulation and weaving parameters should be controlled to produce robust 3D printed extended-release tablets by SEP. This or similar 3D printing (SEP) procedures have significant potential to contribute to personalized therapy and/or preparation-on-demand medications at health care settings.