(34c) A Constrained Version of the Dynamic Response Surface Methodology for Challenging Time-Resolved Pharmaceutical Reaction Data
AIChE Annual Meeting
2018
2018 AIChE Annual Meeting
Pharmaceutical Discovery, Development and Manufacturing Forum
Innovations in Pharmaceutical Discovery, Development, and Manufacturing
Sunday, October 28, 2018 - 4:12pm to 4:33pm
The initial DRSM-1 approach2 leads to oscillatory behavior in the modeling of some concentration profiles, especially for experiments with non-constant sampling intervals or for intermediate species whose final concentrations are comparable to the level of noise. To address these issues, the DRSM-2 approach uses an exponential transformation of time as the independent variable which results in more parsimonious models. This eliminates the occurrence of any oscillatory behavior on the prediction when none is expected, and it provides much more accurate models for the case of non-equidistant sampling strategies. The constrained improvements introduced here include: fixing the initial concentrations when they are known, prohibiting the model from temporarily predicting negative concentration for species that start at a zero value, and enforcing that all concentration predictions must be non-negative. We conclude with a demonstration of the effectiveness of the constrained DRSM-2 algorithm in cases that a substantial fraction of the concentration data are missing, but still leading to an accurate DRSM model.
References
- Georgakis C. Design of Dynamic Experiments: A Data-Driven Methodology for the Optimization of Time-Varying Processes. Industrial & Engineering Chemistry Research. 2013;52(35):12369-12382.
- Klebanov N, Georgakis C. Dynamic Response Surface Models: A Data-Driven Approach for the Analysis of Time-Varying Process Outputs. Ind Eng Chem Res. 2016;55(14):4022-4034.
- Wang ZY, Georgakis C. New Dynamic Response Surface Methodology for Modeling Nonlinear Processes over Semi-infinite Time Horizons. Industrial & Engineering Chemistry Research. 2017;56(38):10770-10782.