(534d) Atomistic Simulations of Carbon Nanotube Deposition on Functionalized Silica Substrates
AIChE Annual Meeting
2019
2019 AIChE Annual Meeting
Engineering Sciences and Fundamentals
Interfacial Phenomena in Non-Aqueous Liquids
Wednesday, November 13, 2019 - 1:15pm to 1:30pm
In this work, we study the liquid-phase deposition of SWCNTs on silica surfaces functionalized by self-assembled monolayers (SAMs) composed of organic molecules grafted to the silica substrate. Experiments find that SWCNT deposition depends on both the SAM chemistry and choice of organic solvent. However, no linear correlation is found between the hydrophobicity/hydrophilicity of the SAMs and the deposition density and pattern. In order to provide mechanistic insights into this deposition phenomenon, we apply molecular dynamics (MD) simulations to study the adsorption of PFO-BPy wrapped SWCNT on different SAM-protected silica surfaces in chloroform or toluene solutions. We focus on model SAMs that differ in extremes of observed deposition and wettability. Potential of mean force calculations reveal the different free energy landscapes for adsorption to each SAM in each solvent composition, which we relate to the solvent organization and interactions at the interface. Our findings provide new insight into the how the interplay of copolymer, SAM, and solvent interactions influence CNT deposition.