(560gj) A Waste-to-Value Technology for Sustainable Bromine Production Using Heteroatom-Doped Carbon Nanostructures
AIChE Annual Meeting
2019
2019 AIChE Annual Meeting
Catalysis and Reaction Engineering Division
Poster Session: Catalysis and Reaction Engineering (CRE) Division
Wednesday, November 13, 2019 - 3:30pm to 5:00pm
To significantly reduce the energy input for electrocatalytic Br- oxidation we have proposed the use of oxygen depolarized cathodes (ODCs) where oxygen is reduced to form water instead of the traditional HER cathodes. Successful operation of ODCs depends on the activity of the catalyst towards oxygen reduction reaction (ORR) and stability after exposure to Br- ions that can migrate from the anode to the cathode side. We have identified that nitrogen-doped carbon nanostructures (CNx) are promising alternatives to precious metals, as both anode and cathode catalysts for electrocatalytic Br- removal from waste water using ODC technology. At Br- concentration as low as 0.025 M, the BER activity of CNx is found to be comparable to that of state-of-the-art 10% Pt/C under acidic conditions, even at very low overpotentials. Chronoamperometry measurements demonstrate the stability of CNx under BER conditions without significant destabilization or carbon corrosion. The effect of changing pH and presence of impurities in the electrolyte on the BER activity of CNx is also examined. A combination of density functional theory (DFT) calculations, electrochemical measurements and characterization using X-ray photoelectron spectroscopy and Raman spectroscopy is used to investigate the nature of BER active sites and elucidate BER mechanism on CNx catalyst. Additionally, for the cathodic oxygen reduction reaction, CNx catalyst demonstrates high resistance to deactivation in the presence of Br- ions, in contrast with commercial Pt/C sample. This study therefore shows the promise of using CNx catalyst for electrocatalytic conversion of Br- ions from waste water into bromine gas using ODC technology.