(642f) Computational Modeling of Liposome Formation in a Continuous Jet Flow Process Using CFD and MD
AIChE Annual Meeting
2019
2019 AIChE Annual Meeting
Pharmaceutical Discovery, Development and Manufacturing Forum
In-Silico Tools for Accelerating Pharmaceutical Process Development
Thursday, November 14, 2019 - 9:25am to 9:42am
Methods: Both computational fluid dynamics (CFD), as a macro-scale simulation, and coarse-grained molecular dynamics (CG-MD), as a micro-scale investigation, have been conducted to not only reveal the detailed mechanism of liposome formation, but also implement multi-scale case studies for the process. CFD simulations were verified by comparison of flow pattern as well as formation temperature with experiments.
Results: The CG-MD simulations revealed that MARTINI force field (FF) could not capture a realistic behavior of lipids and cholesterol in ethanol solution due to lipids aggregation, which caused deviation from both the experimental results and all-atom MD simulations. Further optimization of MARTINI FF with reference to all-atom MD simulations was performed using a versatile object-oriented toolkit for coarse-graining applications (VOTCA). The multi-scale simulations were found to be most accurate when compared to the experimental data and trends. The CFD simulation results suggested that including heat of mixing in the energy equation would be desired to obtain a formation temperature comparable with the experiments.
Conclusions: Default MARTINI potential energy parameters require optimization with reference to an all-atom MD simulation for properly modeling lipids in ethanol solution. Discrete and continuum computational modeling of liposome formation were found to be two viable complementary approaches which cover micro-scale and macro-scale, respectively.
Acknowledgements: FDA Grant# 1U01FD005773-01.
Disclaimer: This article reflects the views of the authors and should not be construed to represent FDAâs views or policies.