(178b) Mechanical Reliability in the Chemical Industry: Challenges and Successes in Predictive Maintenance Modeling
AIChE Spring Meeting and Global Congress on Process Safety
2019
2019 Spring Meeting and 15th Global Congress on Process Safety
Industry 4.0 Topical Conference
Big Data Analytics - Industry Perspective II
Wednesday, April 3, 2019 - 2:00pm to 2:30pm
There exists a wealth of data in the chemical industry in process instrumentation and historical equipment records, and advances in digitization and data utilization are occurring in the age of Industry 4.0. Data mining, increased computing power, and user-friendly implementations of machine learning models enable early detection of impending failures, in some cases with significantly improved lead times compared to condition based monitoring systems. However, challenges exist in modeling these sparse datasets (few failures to train a model on), on equipment that is not like-for-like across an enterprise, and where the end-users do not have data science expertise.
In this talk we will discuss the improvements in reliability that machine/deep learning models can provide along with the challenges the chemical industry faces in applying these methodologies. Dow Chemical is undergoing an evaluation of many current technologies on the market, and we will share key elements in our assessment of the capabilities and the fit for our industry. There are challenges with the âbig dataâ we have available, but there are successes to share as well, ultimately leading to more reliable, sustainable, and safe chemical plants.