High Purity Ethanol without Distillation: Carbon Nanotube Enabled Ethanol Dewatering

Biofuels produced from fermentation processes have long been processed using decades-old distillation technology. Distilling a minor component of this broth to a high purity requires substantial amounts of energy that can lessen the net-energy and profitability of the fuel produced. This work will demonstrate a new technology concept developed by Mattershift, LLC that uses a carbon nanotube (CNT) membrane to selectively extract the biofuel, in this case ethanol, from a fermentation broth.

Investigators

Jeffery McCutcheon
Associate Professor and Executive Director, Frauhofer USA Center for Energy Innovation

Partner Organizations

University of Connecticut

Date approved

July 01, 2018
Current TRL
4

Three-Way Catalytic Distillation to Renewable Surfactants via Triglycerides

Renewable feedstocks, including triglycerides and lignocellulose-derived sugars, can be converted to a new class of ionic surfactants, called “oleo-furan sulfonates” (OFS) by multi-step solid acid catalysis. The renewable OFS surfactant exhibits superior properties relative to conventional fossil-derived materials with higher micelle-forming efficiency, stability in cold water, and resistance to hard water.

Investigators

Paul Dauenhauer
Lanny & Charlotte Schmidt Professor and MacArthur Fellow

Date approved

November 01, 2017
Current TRL
4

Sugars-To-Bioproducts Scalable Platform Technology

While tremendous progress has been achieved on creating routes for the production of chemicals and fuels from lignocellulosic biomass, many of these processes are not economic due to the number of process steps required and the requirement for significant inter-stage separations. This project is developing a modularized chemical process intensification technology for the production of bio-para-xylene (biopX) from glucose.

Investigators

Dion Vlachos
Allan and Myra Ferguson Professor of Chemical and Biomolecular Engineering

Partner Organizations

University of Delaware

Date approved

November 01, 2017
Current TRL
4

Robust Membranes For Black Liquor Concentration

Black liquor (BL), also known as “spent pulping liquor”, is a high-volume byproduct of lignocellulosic biomass pretreatment (i.e., wood pulping by the kraft process). BL is a corrosive, toxic, and complex mixture. About 500 million tons/yr of BL are produced in more than 200 kraft process units worldwide (including 99 in the US, with about 0.2 quads/yr energy spent for BL concentration by multi-effect evaporation). Currently, BL concentration is performed by multi-effect evaporators and is one of the most energy-intensive industrial separation processes.

Investigators

Sankar Nair
Associate Professor

Partner Organizations

Georgia Institute of Technology APPTI

Date approved

November 01, 2017
Current TRL
6

Pages