Thermoneutral Propane Dehydrogenation via a Solid Oxide Membrane Reactor

This project is utilizing solid oxide membrane reactors for chemical transformations that are critical to the seamless integration of shale natural gas and liquids into the chemical industry supply chain. The project is particularly interested in the production of propylene from propane. Current propylene production occurs primarily via naphtha steam cracking, a highly energy-intensive process that is not amenable to distributed operations, which are highly desirable when shale natural gas and liquid is used as the carbon source.

Investigators

Suljo Linic
Professor of Chemical Engineering

Date approved

November 01, 2017
Current TRL
3

Microfibrous Entrapped Sorbents for High Throughput Modular Process Intensified Gas Separation and Ion Exchange

This project will utilize microfibrous entrapment of small particulate sorbents or ion exchange (IX) resins to overcome physical barriers and identified technology gaps that currently prevent energy efficient and cost-effective wellhead CO2/CH4 separations through pressure swing adsorption (PSA) and Cs+ removal from nuclear fuel processing streams. Both commercial cyclic adsorption processes are currently limited by heat and mass transport restrictions occurring in large particle (1-4 mm diameter) packed beds.

Investigators

Paul Dimick
General Manager

Date approved

November 01, 2017
Current TRL
3

Intensified Microwave Reactor Technology

This project looks to develop both foundational hardware and modeling tools for microwaves as a non-conventional energy input source - a key theme in process intensification - for reactions across chemical conversions and materials synthesis. The project develops scalable microwave technology (MWT) across industries and RAPID focus areas (FAs) and demonstrates its diverse applications with different spatial, temporal, and phase characteristics, often combined with additional process intensification (PI) technologies.

Investigators

Dion Vlachos
Allan and Myra Ferguson Professor of Chemical and Biomolecular Engineering

Date approved

November 01, 2017
Current TRL
4

Use of Power Ultrasound for Nonthermal, Nonequilibrium Separation of Ethanol/Water Solutions

Separation of liquid mixtures, frequently by distillation, consumes large amounts of energy in the chemical and process industries. This project proposes to develop, test, and demonstrate a continuous-flow, scalable, nonthermal, nonequilibrium liquid separation for the test case of ethanol + water that uses ultrasound, and avoids the heat transfer losses and azeotropic bottleneck of distillation. The basis of the separation is straightforward. When ultrasound passes through a nominally quiescent liquid with a free surface above, droplets are produced and form a mist.

Investigators

Hao Feng
Professor of Food and Bioprocess Engineering

Date approved

July 01, 2018
Current TRL
6

Pages