A Multi-Scale Approach to Plant Specialized Metabolic Engineering | AIChE

A Multi-Scale Approach to Plant Specialized Metabolic Engineering

Our research is focused on cellular engineering and design of bioprocesses using plant-based systems. Plants produce sophisticated small molecules that play key roles in defense against predators and environmental elements. These natural products are synthesized through specialized metabolic pathways, that have both shared and unique components when compared amongst plant systems.

These specialized metabolites are useful in a variety of societal applications including as nutraceuticals, flavorings, colorings and pharmaceuticals. The supply of these compounds is often hindered due to low yields in nature and the inability to chemically synthesize at scale. We use plant cell culture technology as both a system of study and a scalable production system due to the ability to engineer cells and the environment to optimize accumulation of products of interest.

Today, I will present our story of understanding and optimizing paclitaxel production in Taxus plant cell suspension culture using a multi-pronged cellular engineering approach (intracellular, intercellular and extracellular scales). I will focus on our recent approaches and results in considering global specialized metabolism, specialized metabolite transport and epigenetic mechanisms.

Our group uses a combination of traditional bioprocess engineering techniques (e.g., bioreactor design, cell culture, cell encapsulation), modern molecular biology and analytical chemistry techniques (e.g., gene transfer, transcriptomics analyses, UPLC) and mathematical modeling (e.g., genome scale modeling, metabolic flux analyses). Our research has been funded largely through the NSF, NIH and industrial collaborations.

Example projects include metabolic engineering of paclitaxel (FDA approved anti-cancer agent) synthesis in plant cell culture; manipulation of cellular aggregation to enhance plant cell growth and product formation; establishing early predictors of embryo yield success from somatic embryogenesis cultures for clonal propagation of superior plants; fundamental understanding of the interaction between primary and specialized metabolism in plant systems for directed biosynthesis; and design of plant-animal co-culture systems to exploit the unknown interactions between the species to identify new products and understand fundamental interactions.

Prof. Roberts’ group uses a combination of traditional bioprocess engineering techniques (e.g., bioreactor design, cell culture, cell encapsulation), modern molecular biology and analytical chemistry techniques (e.g., gene transfer, transcriptomics analyses, UPLC) and mathematical modeling (e.g., genome scale modeling, metabolic flux analyses). Prof. Roberts’ research has been funded largely through the NSF, NIH and industrial collaborations.


Webinar content is available with the kind permission of the author(s) solely for the purpose of furthering AIChE’s mission to educate, inform and improve the practice of professional chemical engineering. The content reflects the views, opinions, and recommendations of the presenters. AIChE does not warrant or represent, expressly or by implication, the correctness or accuracy of the content of the information presented. All other uses are forbidden without the express consent of the author(s). For permission to re-use, please contact chemepermissions@aiche.org. Attendee contact information, including email addresses, will be shared with AIChE, with the option to unsubscribe from future communications.

Once the content has been viewed and you have attested to it, you will be able to download and print a certificate for PDH credits. If you have already viewed this content, please click here to login.
  • AIChE Pro Members - Free
  • AIChE Graduate Student Members - Free
  • AIChE Undergraduate Student Members - Free
  • AIChE Explorer Members - $109.00
  • Non-Members - $109.00
Do you already own this? Log In for instructions on accessing this content.
  • Source:
    Northeastern University Graduate Student Series
  • Language:
    English
  • Skill Level:
    Intermediate
  • Duration:
    1 hour
  • PDHs:
    1.00